109
Views
15
CrossRef citations to date
0
Altmetric
Review

T-cell epitope peptide vaccines

, &
Pages 563-575 | Published online: 09 Jan 2014

References

  • Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases, 1893. Clin. Orthop. (262), 3–11 (1991).
  • Chen C. Experimental vaccine strategies for cancer immunotherapy. I Biomed. Sci. 5, 231–252 (1998).
  • Schuler G, Steinman RM. Dendritic cells as adjuvants for immune-mediated resestance to tumors. J Exp. Med. 186,1183–1187 (1997).
  • Nestle FO, Alijagic S, Gilliet M et al Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4(3), 328–332 (1998).
  • Zinkernagel RM, Doherty PC. MHC-restricted cytotoxic T-cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv. Immunol 27,51–177 (1979).
  • Melief CJ, Kast WM. T-cell immunotherapy of cancer. Res. Immunol 142,425–429 (1991).
  • Greenberg PD. Adoptive T-cell therapy of tumors, mechanisms operative in the recognition and elimination of tumor cells. Adv. Irnmunol 49,281–355 (1991).
  • Berke G. The binding and lysis of target cells by cytotoxic T-lymphocytes: molecular and cellular aspects. Ann. Rev Immunol 12, 735–773 (1994).
  • Nabholz M, MacDonald HR. Cytolytic T-lymphocytes. Ann. Rev Immunol 1, 273–305 (1983).
  • Grabbe S, Beissert S, Schwartz T, Granstein RD. Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 16, 116–120 (1996).
  • Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Ann. Rev Immuno1.11,403–450 (1993).
  • Schoenberger SP, Toes RE, van der Voort El, Offringa R, Melief CJ. T-cell help for cytotoxic T-lymphocytes is mediated by CD4O—CD4OL interactions. Nature 393(6684), 480–483 (1998).
  • Ridge JP, Di Rosa F, Matzinger P A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684), 474–478 (1998).
  • Bennett SR, Carbone FR, Karamalis F et al Help for cytotoxic-T-cell responses ismediated by CD40 signalling. Nature 393(6684), 478–480 (1998).
  • Toes RE, van der Voort El, Schoenberger SP et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. j Irarnunol 160(9), 4449–4456 (1998).
  • Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T-cells in the generation of CDS+ T-cell memory. Science 297(5589), 2060-2063 (2002).
  • Giuntoli RL 2nd, Lu J, Kobayashi H, Kennedy R, Celis E. Direct costimulation of tumor-reactive CTL by helper T-cells potentiate their proliferation, survival, and effector function. Clin. Cancer Res. 8(3), 922–931 (2002).
  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen-processing machines. Cell106 (3), 255–258 (2001).
  • Steinman RM. The dendritic cell system and its role in immunogenicity. Ann. Rev Immunol 9,271–296 (1991).
  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T-cell stimulation by dendritic cells. Ann. Rev Immunol 20, 621–667 (2002).
  • Brossart P, Bevan MJ. Presentation of exogenous protein antigens on major histocompatibility complex Class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 9O(4), 1594–1599 (1997).
  • Watts C. The exogenous pathway for antigen presentation on major histocompatibility complex Class II and CD1 molecules. Nature Immuno1 5(7), 685–692 (2004).
  • •Discusses the fates of T-cell epitopes.
  • Watts C, Amigorena S. Antigen traffic pathways in dendritic cells. Traffic1(4), 312–317 (2000).
  • Ackerman AL, Cresswell P Cellular mechanisms governing cross-presentationof exogenous antigens. Nature Immuno1 5(7), 678–684 (2004).
  • Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immuno1 23(9), 445–449 (2002).
  • ••Highlights the importance of dendriticcells (DCs) in tolerance and immunity.
  • Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T-cell function in humans after injection of immature dendritic cells. J Exp. Med. 193(2), 233–238 (2001).
  • Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer 93 (2), 243–251 (2001).
  • Bennett SRM, Carbone FR, Karamalis F, Miller JFAP, Heath WR. Induction of a CDS+ cytotoxic T-lymphocyte response by cross-priming requires cognate CD4* T-cell help. J. Exp. Med, 186,65-70 (1997).
  • Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17(7), 1211–1262 (2003).
  • Chi N, Epstein JA. Getting your Fax straight: Fax proteins in development and disease. Trends Genet. 18(1), 41–47 (2002).
  • Horoszewicz J, Leong S, Kawinski E et al LNCaP model of human prostatic carcinoma. Cancer Res. 43,1809–1818 (1983).
  • Pretlow T, Wolman S, Micale M et al. Xenografts of primary human prostataic carcinoma. J Natl Cancer Inst. 85,394–398 (1993).
  • Nagabhushan M, Miller C, Pretlow T et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56,3042–3046 (1996).
  • van Weerden W, de Ridder C, Verdaasdonk C et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am. J. PathoL 149,1055–1062 (1996).
  • Klein K, Reiter R, Redula J et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Med. 3,402–408 (1997).
  • Rooney CM, Heslop HE, Brenner MK. EBV specific CTL: a model for immune therapy. Vox Sang. 74\(Suppl. 2), 497–498 (1998).
  • Coulie PG. Human tumour antigens recognized by T-cells: new perspectives for anticancer vaccines? Mo1 Med. Today 3 (6), 261–268 (1997).
  • Kawakami Y, Rosenberg SA. Immunobiology of human melanoma antigens MART-1 and gp100 and their use for immunogene therapy. Int. Rev Immuno1 14 (2–3), 173–192 (1997).
  • Toes RE, Offringa R, Feltkamp MC et al. Tumor rejection antigens and tumor specific cytotoxic T-lymphocytes. Behring Inst. Mitt. (94), 72–86 (1994).
  • Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T-lymphocytes. Ann. Rev. Immunol 12,337–365 (1994).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4(3), 321–327 (1998).
  • Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T-cells and induces regression of some metastases in advanced Stage IV melanoma. J Exp. Med. 190 (11), 1669–1678 (1999).
  • Rosenberg SA, Packard BS, Aebersold PM et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Eng1 J Med. 319 (25), 1676–1680 (1988).
  • Heslop HE, Rooney CM. Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immuno1 Rev 157,217–222 (1997).
  • Porgador A, Gilboa E. Bone-marrow generated dendritic cells pulsed with a Class- 1-restricted peptide are potent inducers of cytotoxic T-lymphocytes. Exp. Med. 182,255-260 (1995).
  • Mayordomo JL, Zorina T, Storkus W et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumour immunity. Nature Med. 1,1297–1302 (1995).
  • Lu J, Celis E. Use of two predictive algorithms of the worldwide web for the identification of tumor-reactive T-cell epitopes. Cancer Res. 60(18), 5223–5227 (2000).
  • •Demonstrates the success of computer algorithms in epitope identification.
  • Lu J, Celis E. Recognition of prostate tumor cells by cytotoxic T-lymphocytes specific for prostate-specific membrane antigen. Cancer Res. 62,5807 (2002).
  • Marchand M, Weynants P, Rankin E et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Internatl J. Cancer 63, 883–885 (1995).
  • Jager E, Ringhoffer M, Dienes H et al. Granulocyte—macrophage colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Internal-1J Cancer 67,54–62 (1996).
  • Weber J, Hua F, Spears L et al. A Phase I trial of an HLA-Al restricted MAGE-3 epitope peptide with incomplete Freund's adjuvant in patients with resected high-risk melanoma. J Immunother. 22,431–440 (1999).
  • Surman D, Dudley M, Overwijk W, Restifo N. Cutting edge: CDC T-cell control of CD8+ T-cell reactivity to a model tumor antigen. J. Immuno1164,562–565 (2000).
  • Pardoll D, Topalian S. The role of CD4+ T-cell responses in antitumor immunity. CUIT: Opin. Immuno1 10,588–594 (1998).
  • •Discusses the importance of T-helper cells.
  • Toes RE, Ossendorp F, Offringa R, Melief CJ. CD4 T-cells and their role in antitumor immune responses. J. Exp. Med. 189, 753–756 (1999).
  • Riddell SR, Greenberg PD. Principles for adoptive T-cell therapy of human viral diseases. Ann. Rev Immuno1 13,545 (1995).
  • Riddell SR, Watanabe KS, Goodrich JM et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 257,238 (1992).
  • Heslop HE, Ng CY, Li C et al. Long-term restoration of immunity against Epstein-barr virus infection by adoptive transfer of gene-modified virus-specific T-lymphocytes. Nature Med. 2,551 (1996).
  • Kobayashi H, Wood M, Song Y, Appella E, Celis E. Defining promiscuous MHC Class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res. 60(18), 5228–5236 (2000).
  • Kobayashi H, Lu J, Celis E. Identification of helper T-cell epitopes that encompass or lie proximal to cytotoxic T-cell epitopes in the gp100 melanoma tumor antigen. Cancer Res. 61(20), 7577–7584 (2001).
  • Kobayashi H, Song Y, Hoon DS, Appella E, Celis E. Tumor-reactive T-helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex Class II alleles. Cancer Res. 61(12), 4773–4778 (2001).
  • Kobayashi H, Omiya R, Ruiz M et al. Identification of an antigenic epitope for helper T-lymphocytes from carcinoembryonic antigen. Clin. Cancer Res. 8(10), 3219–3225 (2002).
  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3-4), 213–219 (1999).
  • Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T-cells. Cancer Immunol Immunother. 50(1), 3–15 (2001).
  • Boon T, De Plaen E, Lurquin C et al. Identification of tumor rejection antigens recognized by T-lymphocytes. Cancer Surv 13,23–37 (1992).
  • Kawakami Y, Nishimura MI, Restifo NP et al. T-cell recognition of human melanoma antigens. J Immunother. 14(2), 88–93 (1993).
  • Slingluff CL Jr, Hunt DF, Engelhard VH. Direct analysis of tumor-associated peptide antigens. CUIT Opin. Immunol 6(5), 733–740 (1994).
  • Celis E, Sette A, Grey HM. Epitope selection and development of peptide-based vaccines to treat cancer. Semin. Cancer Biol. 6(6), 329–336 (1995).
  • •• Discusses peptide vaccines for cancer.
  • Tureci O, Sahin U, Pfreundschuh M. Serological analysis of human tumor antigens: molecular definition and implications. Mol Med. Today 3(8) 342–349 (1997).
  • Hartmann TB, Thiel D, Dummer R, Schadendorf D, Eichmuller S. SEREX identification of new tumor-associated antigens in cutaneous T-cell lymphoma. Br. J. Dermatol 150(2), 252–258 (2004).
  • Greiner J, Ringhoffer M, Taniguchi M et al Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia. Int. J. Cancer 106(2), 224–231 (2003).
  • Minenkova O, Pucci A, Pavoni E et al. Identification of tumor-associated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients. Int. J. Cancer 106(4), 534–544 (2003).
  • Li G, Miles A, Line A, Rees RC. Identification of tumor antigens by serological analysis of cDNA expression cloning. Cancer Immunol Immunother. 53(3), 139–143 (2004).
  • Weinschenk T, Gouttefangeas C, Schirle M et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 62(20), 5818–5827 (2002).
  • Schag K, Schmidt SM, Muller MR et al. Identification of C-met oncogene as a broadly expressed tumor-associated antigen recognized by cytotoxic T-lymphocytes. Clin. Cancer Res. 10(11),3658–3666 (2004).
  • Schmidt SM, Schag K, Muller MR et al. Induction of adipophilin-specific cytotoxic T-lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res. 64(3), 1164–1170 (2004).
  • Rammensee HG, Falk K, Rotzschke O. Peptides naturally presented by MHC Class I molecules. Ann. Rev Immunol 11, 213–244 (1993).
  • Rammensee HG, Falk K, Rotzschke O. MHC molecules as peptide receptors. CUIT Opin. Immunol 5(1), 35–44 (1993).
  • Kawashima I, Tsai V, Southwood S et al. Identification of gp100-derived, melanoma-specific cytotoxic T-lymphocyte epitopes restricted by HLA-A3 supertype molecules by primary in vitro immunization with peptide-pulsed dendritic cells. Int. J Cancer 78(4), 518–524 (1998).
  • Celis E, Tsai V, Crimi C et al. Induction of antitumor cytotoxic T-lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc. Natl.
  • Tsai V, Southwood S, Sidney J et al Identification of subdominant CTL epitopes of the GP100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells. J Immunol 158(4), 1796–1802 (1997).
  • Kawashima I, Hudson SJ, Tsai V et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum. Immunol 59(1), 1–14 (1998).
  • Kawashima I, Tsai V, Southwood S et al. Identification of HLA-A3-restricted cytotoxic T-lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res. 59(2), 431–435 (1999).
  • Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T-lymphocytes. Immunity10 (6), 673–679 (1999).
  • Minev B, Hipp J, Firat H et al. Cytotoxic T-cell immunity against telomerase reverse transcriptase in humans. Proc. Nat/Acad. Sci. USA 97(9), 4796–4801 (2000).
  • Ayyoub M, Migliaccio M, Guillaume P et al. Lack of tumor recognition by hTERT peptide 540-548-specific CD8(+) T-cells from melanoma patients reveals inefficient antigen processing. Ear I Immunol 31(9), 2642–2651 (2001).
  • Speiser DE, Cerottini JC, Romero P Can hTERT peptide (540-548)-specific CD8 T-cells recognize and kill tumor cells? Cancer Immun. 2,14 (2002).
  • Parkhurst MR, Riley JP, Igarashi T et al. Immunization of patients with the hTERT:540-548 peptide induces peptide-reactive T-lymphocytes that do not recognize tumors endogenously expressing telomerase. Clin. Cancer Res. 10(14), 4688–4698 (2004).
  • Melief CJ, Offringa R, Toes RE, Kast WM. Peptide-based cancer vaccines. CUTE Opin. Immunol 8(5), 651–657 (1996).
  • Buteau C, Markovic SN, Celis E. Challenges in the development of effective peptide vaccines for cancer. Mayo Clin. Proc. 77(4), 339–349 (2002).
  • ••Reviews the problems associated withpeptide vaccines.
  • Southwood S, Sidney J, Kondo A et al. Several common HLA-DR types share largely overlapping peptide-binding repertoires. J ImmunoL 160(7) 3363–3373 (1998).
  • Valmori D, Dutoit V, Ayyoub M et aL Simultaneous CD8+ T-cell responses to multiple tumor antigen epitopes in a multipeptide melanoma vaccine. Cancer Immun. 3,15 (2003).
  • Widmann C, Romero P, Marjanski J, Coradin G, Valmori D. T-helper epitopes enhance the cytotoxic response of mice immunized with MHC Class I-restricted malaria peptides. ImmunoL Meth. 155,95 (1992).
  • Kyburz D, Aichele P, Speiser DE et al. T-cell immunity after a viral infection versus T-cell tolerance induced by soluble viral peptides. Eur. j ImmunoL 23(8), 1956–1962 (1993).
  • Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA, 93(15), 7855–7860 (1996).
  • Schijns VE. Induction and direction of immune responses by vaccine adjuvants. Crit. Rev ImmunoL 21 (1-3), 75–85 (2001).
  • Matzinger P Tolerance, danger, and the extended family. Ann. Rev ImmunoL 12, 991–1045 (1994).
  • Medzhitov R. Toll-like receptors and innate immunity. Nature Rev ImmunoL 1(2), 135–145 (2001).
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Ann. Rev Immunol. 20,197–216 (2002).
  • Gallucci S, Lolkema M, Matzinger Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5(11), 1249–1255 (1999).
  • Hadden JW. T-cell adjuvants. Int. J ImmunopharmacoL 16 (9), 703–710 (1994).
  • Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochim. Biophys. Acta 1589(1), 1–13 (2002).
  • Lipford GB, Bauer M, Blank C et al. CpG-containing synthetic oligonucleotides promote B and cytotoxic T-cell responses to protein antigen: a new class of vaccine adjuvants. Eur. ImmunoL 27(9), 2340–2344 (1997).
  • Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Natl Acad. Sci. USA 94(20), 10833–10837 (1997).
  • Davila E, Celis E. Repeated administration of cytosine-phosphorothiolated guanine-containing oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with antitumor activity. J. IMMUfla 165 (1), 539–547 (2000).
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256), 1734–1736 (1996).
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anticytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and granulocyte—macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190(3), 355–366 (1999).
  • Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature IrnmunoL 3(7), 611–618 (2002).
  • Davila E, Kennedy R, Celis E. Generation of antitumor immunity by cytotoxic T-lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res. 63(12), 3281–3288 (2003).
  • Davila E, Velez MG, Heppelmann CJ, Celis E. Creating space: an antigen-independent, CpG-induced peripheral expansion of naïve and memory T-lymphocytes in a full T-cell compartment. Blood 100(7), 2537–2545 (2002).
  • Machiels JP, Reilly RT, Emens LA et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte—macrophage colony-stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 61 (9), 3689–3697 (2001).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Dummer W, Niethammer AG, Baccala R et al T-cell homeostatic proliferation elicits effective antitumor autoimmunity. I Clin. Invert. 110(2), 185–192 (2002).
  • Maine GN, Mule JJ. Making room for T-cells.j Clin. Invert.110 (2), 157–159 (2002).
  • Emens LA, Jaffee EM. Cancer vaccines: an old idea comes of age. Cancer Biol. Ther. 2(4 Suppl. 1), S161—S168 (2003).
  • Tan JT, Dudl E, LeRoy E et al. IL-7 is critical for homeostatic proliferation and survival of naive T-cells. Proc. Natl Acad. Sci. USA 98(15), 8732–8737 (2001).
  • Parrish-Novak J, Foster DC, Holly RD, Clegg CH. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T-cell responses. J Leukoc. Biol. 72(5), 856–863 (2002).
  • DiGiacomo A, North RJ. T-cell suppressors of antitumor immunity. The production of Ly-1-,2+ suppressors of delayed sensitivity precedes the production of suppressors of protective immunity. J. Exp. Med. 164(4), 1179–1192 (1986).
  • Awwad M, North RJ. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res. 49(7), 1649–1654 (1989).
  • Awwad M, North RJ. Radiosensitive barrier to T-cell-mediated adoptive immunotherapy of established tumors. Cancer Res. 50(8), 2228–2233 (1990).
  • Glaser M. Regulation of specific cell-mediated cytotoxic response against 5V40-induced tumor-associated antigens by depletion of suppressor T-cells with cyclophosphamide in mice. J. Exp. Med. 149(3), 774–779 (1979).
  • Milton JD, Carpenter CB, Addison IE. Depressed T-cell reactivity and suppressor activity of lymoid cells from cyclophosphamide-treated mice. Cell. ImmunoL 24(2), 308–317 (1976).
  • Ghiringhelli F, Larmonier N, Schmitt E et al. CD4±CD25+ regulatory T-cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. Immunol 34(2), 336–344 (2004).
  • Li L, Okino T, Sugie T et al. Cyclophosphamide given after active specific immunization augments antitumor immunity by modulation of Thl commitment of CD4+ T-cells. I Surg. OncoL 67(4), 221–227 (1998).
  • Rajnavolgyi E, Lanyi A. Role of CDC+ T-lymphocytes in antitumor immunity. Adv. Cancer Res. 87,195–249 (2003).
  • Mackensen A, Herbst B, Chen JL et aL Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. Cancer 86 (3), 385–392 (2000).
  • Overwijk WW Restifo NP Autoirnmunity and the immunotherapy of cancer: targeting the self' to destroy the 'other'. Crit. Rev Imrnunol. 20(6), 433–450 (2000).
  • Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 61 (17), 6451–6458 (2001).
  • Corbo M, Balmaceda C. Peripheral neuropathy in cancer patients. Cancer Invest. 19(4), 369–382 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.