410
Views
66
CrossRef citations to date
0
Altmetric
Review

MUC1 as a target antigen for cancer immunotherapy

&
Pages 493-502 | Published online: 09 Jan 2014

References

  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517), 495–497 (1975).
  • Nuti M, Teramoto YA, Mariani-Costantini R, Hand PH, Colcher D, Schlom J. A monoclonal antibody (b72.3) defines patterns of distribution of a novel tumor-associated antigen in human mammary carcinoma cell populations. Int. J. Cancer 29(5), 539–555 (1982).
  • Sekine H, Ohno T, Kufe DW. Purification and characterization of a high molecular weight glycoprotein detectable in human milk and breast carcinomas. J. Immunol.135(5), 3610–3615 (1985).
  • Stacker SA, Tjandra JJ, Xing PX, Walker ID, Thompson CH, McKenzie IF. Purification and biochemical characterisation of a novel breast carcinoma associated mucin-like glycoprotein defined by antibody 3e1.2. Br. J. Cancer 59(4), 544–553 (1989).
  • Keydar I, Chou CS, Hareuveni M et al. Production and characterization of monoclonal antibodies identifying breast tumor-associated antigens. Proc. Natl Acad. Sci. USA86(4), 1362–1366 (1989).
  • Burchell J, Gendler S, Taylor-Papadimitriou J et al. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res.47(20), 5476–5482 (1987).
  • Lan MS, Khorrami A, Kaufman B, Metzgar RS. Molecular characterization of a mucin-type antigen associated with human pancreatic cancer. The du-pan-2 antigen. J. Biol. Chem. 262(26), 12863–12870 (1987).
  • Girling A, Bartkova J, Burchell J, Gendler S, Gillett C, Taylor-Papadimitriou J. A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int. J. Cancer 43(6), 1072–1076 (1989).
  • Karanikas V, Hwang LA, Pearson J et al. Antibody and T-cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100(11), 2783–2792 (1997).
  • Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem.265(25), 15294–15299 (1990).
  • Gendler S, Taylor-Papadimitriou J, Duhig T, Rothbard J, Burchell J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem. 263(26), 12820–12823 (1998).
  • Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265(25), 15286–152893 (1990).
  • Hori Y, Spurr-Michaud S, Russo CL, Argueso P, Gipson IK. Differential regulation of membrane-associated mucins in the human ocular surface epithelium. Invest. Ophthalmol. Vis. Sci. 45(1), 114–122(2004).
  • Hilkens J, Vos HL, Wesseling J et al. Is episialin/muc1 involved in breast cancer progression? Cancer Lett.90(1), 27–33 (1995).
  • Lapointe J, Li C, Higgins JP et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA101(3), 811–816 (2004).
  • Kohlgraf KG, Gawron AJ, Higashi M et al. Contribution of the muc1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 63(16), 5011–5020 (2003).
  • Ciborowski P, Finn OJ. Non-glycosylated tandem repeats of muc1 facilitate attachment of breast tumor cells to normal human lung tissue and immobilized extracellular matrix proteins (ecm) in vitro: potential role in metastasis. Clin. Exp. Metastasis 19(4), 339–345 (2002).
  • Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA. Enhancement of metastatic properties of pancreatic cancer cells by muc1 gene encoding an anti-adhesion molecule. Int. J. Cancer88(8), 507–508 (2000).
  • Nitta T, Sugihara K, Tsuyama S, Murata F. Immunohistochemical study of MUC1 mucin in premalignant oral lesions and oral squamous cell carcinoma: association with disease progression, mode of invasion, and lymph node metastasis. Cancer 88(2), 245–254 (2000).
  • Wang JY, Chang CT, Hsieh JS et al. Role of MUC1 and MUC5ac expressions as prognostic indicators in gastric carcinomas. J. Surg. Oncol. 83(4), 253–260 (2003).
  • Fujita K, Denda K, Yamamoto M, Matsumoto T, Fujime M, Irimura T. Expression of MUC1 mucins inversely correlated with post-surgical survival of renal cell carcinoma patients. Br. J. Cancer 80(1–2), 301–308 (1999).
  • Ohgami A, Tsuda T, Osaki T et al. MUC1 mucin mRNA expression in stage I lung adenocarcinoma and its association with early recurrence. Ann. Thorac Surg. 67(3), 810–814 (1999).
  • Nakagawa K, Akagi J, Takai E et al. Prognostic values of MUC-1 molecule expressing cytokine receptor-like epitope and DF3 in patients with gastric carcinoma. Int. J. Oncol. 14(3), 425–435 (1999).
  • McGuckin MEA. Prognostic significance of MUC1 epithelial mucin expression in breast cancer. Human Pathol. 26(4), 432–439 (1995).
  • Nakamori S, Ota DM, Cleary KR, Shirotani K, Itimura T. MUC1 mucin expression as a marker of progression and metastasis in human colorectal carcinoma. Gastroenterolgy 106(2), 353–361 (1994).
  • Guddo F, Giatromanolaki A, Koukourakis MI et al. MUC1(episialin) expression in non-small cell lung cancer is independant of EGFR and c-erbB-2 expression and correlates with poor survival in node positive patients. J. Clin. Pathol. 54(9), 667–671 (1998).
  • Kirschenbaum A, Itzkowitz SH, Wang JP, Yao S, Eliashvili M, Levine AC. MUC1 expression in prostate carcinoma: correlation with grade and stage. Mol. Urol. 3(3), 163–168 (1999).
  • Rahn JJ, Dabbagh L, Pasdar M, Hugh JC. The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer 94(11), 1973–1982 (2001).
  • Goulart LR, Vieira GS, Martelli L, Inacio J, Goulart IM, Franco JG Jr. Is MUC1 polymorphism associated with female infertility? Reprod. Biomed. Online 8(4), 477–482 (2004).
  • Ding L, Lalani EN, Reddish M et al. Immunogenicity of synthetic peptides related to the core peptide sequence encoded by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene. Cancer Immunol. Immunother. 36(1), 9–17 (1993).
  • Petrarca C, Casalino B, von Mensdorff-Pouilly S et al. Isolation of MUC1-primed B lymphocytes from tumor-draining lymph nodes by immunomagnetic beads. Cancer Immunol. Immunother. 47(5), 272–277 (1999).
  • von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P et al. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol. 18(3), 574–583 (2000).
  • Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res. 54(11), 2856–2860 (1994).
  • Apostolopoulos V, Xing PX, McKenzie IF. Murine immune response to cells transfected with human MUC1: immunization with cellular and synthetic antigens. Cancer Res. 54(19), 5186–5193 (1994).
  • Bizouarne P. Immunotherapy of breast cancer using a recombinant Vaccinia virus expressing the human MUC1 and IL2. Breast Cancer Advances Biol. Ther. 303–308 (1996).
  • Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc. Natl Acad. Sci. USA 92(22), 10128–10132 (1995).
  • Gong J, Chen L, Chen D et al. Induction of antigen-specific antitumor immunity with adenovirus-transduced dendritic cells. Gene Ther. 4(10), 1023–1028 (1997).
  • Apostolopoulos V, Yuriev E, Ramsland PA et al. A glycopeptide in complex with MHC class I uses the GalNac residue as an anchor. Proc. Natl Acad. Sci. USA 100(25), 15029–15034 (2003).
  • Reddish MA, Jackson L, Koganty RR, Qiu D, Hong W, Longenecker BM. Specificities of anti-sialyl-tn and anti-Tn monoclonal antibodies generated using novel clustered synthetic glycopeptide epitopes. Glycoconj. J. 14(5), 549–560 (1997).
  • Haurum JS, Arsequell G, Lellouch AC et al. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J. Exp. Med. 180(2), 739–744 (1994).
  • Barnd DL, Lan MS, Metzgar RS, Finn OJ. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T-cells. Proc. Natl Acad. Sci. USA86(18), 7159–7163 (1989).
  • Maccario R, Revello MG, Comoli P, Montagna D, Locatelli F, Gerna G. HLA-unrestricted killing of HSV-1-infected mononuclear cells. Involvement of either γ/δ+ or α/β+ human cytotoxic T- lymphocytes. J. Immunol. 150(4), 1437645 (1993).
  • Sciammas R, Bluestone JA. HSV-1 glycoprotein I-reactive TCR gamma delta cells directly recognize the peptide backbone in a conformationally dependent manner. J. Immunol. 161(10), 5187–5192 (1998).
  • Wajchman HJ, Pierce CW, Varma VA, Issa MM, Petros J, Dombrowski KE. Ex vivo expansion of CD8+CD56+ and CD8+CD56- natural killer T-cells specific for MUC1 mucin. Cancer Res. 64(3), 1171–1180 (2004)
  • Apostolopoulos V, Karanikas V, Haurum JS, McKenzie IF. Induction of HLA-A2-restricted controls to the mucin 1 human breast cancer antigen. J. Immunol. 59(11), 5211–5218 (1997).
  • Brossart P, Heinrich KS, Stuhler G et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93(12), 4309–4317 (1999).
  • Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Rapid induction of primary human CD4+ and CD8+ T-cell responses against cancer-associated MUC1 peptide epitopes. Int. Immunol. 10(12), 1907–1916 (1998).
  • Barnea E, Beer I, Patoka R et al. Analysis of endogenous peptides bound by soluble MHC class I molecules: a novel approach for identifying tumor-specific antigens. Eur. J. Immunol. 32(1), 213–22 (2002).
  • Heukamp LC, van der Burg SH, Drijfhout JW, Melief CJ, Taylor-Papadimitriou J, Offringa R. Identification of three non-VNTR MUC1-derived HLA-A*0201-restricted T-cell epitopes that induce protective anti-tumor immunity in HLA-A2/k(b)-transgenic mice. Int. J. Cancer 91(3), 385–392 (2001).
  • Carmon L, El-Shami KM, Paz A et al. Novel breast-tumor-associated MUC1-derived peptides: characterization in Db-/- x β2 microglobulin (β2m) null mice transgenic for a chimeric HLA-A2.1/Db-β2 microglobulin single chain. Int. J. Cancer 85(3), 391–397 (2000).
  • Fung PY, Longenecker BM. Specific immunosuppressive activity of epiglycanin, a mucin-like glycoprotein secreted by a murine mammary adenocarcinoma (ta3-ha). Cancer Res. 51(4), 1170–1176 (1991).
  • Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nature Med 4(1), 43–49 (1998).
  • Agrawal B, Longenecker BM. MUC1 mucin-mediated regulation of human T-cells. Int. Immunol. 17(4), 391–399 (2005).
  • Paul S, Bizouarne N, Paul A et al. Lack of evidence for an immunosuppressive role for MUC1. Cancer Immunol. Immunother.48(1), 22–28 (1999).
  • Chang JF, Zhao HL, Phillips J, Greenburg G. The epithelial mucin, MUC1, is expressed on resting T-lymphocytes and can function as a negative regulator of T-cell activation. Cell Immunol. 201(2), 83–88 (2000).
  • Rughetti A, Biffoni M, Pierelli L et al. Regulated expression of MUC1 epithelial antigen in erythropoiesis. Br. J. Haematol. 120(2), 344–352 (2003).
  • Link T, Backstrom M, Graham R et al. Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by cho-k1 cells in protein-free medium. J. Biotechnol. 110(1), 51–62 (2004).
  • Zhang S, Graeber LA, Helling F et al. Augmenting the immunogenicity of synthetic MUC1 peptide vaccines in mice. Cancer Res. 56(14), 3315–3319 (1996).
  • Soares MM, Mehta V, Finn OJ. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J. Immunol.166(11), 6555–6563 (2001).
  • Taylor-Papadimitriou J, Burchell JM, Plunkett T et al. MUC1 and the immunobiology of cancer. J. Mammary Gland Biol. Neoplasia 7(2), 209–221 (2002).
  • Fontenot JD, Mariappan S V, Catasti P, Domenech N, Finn OJ, Gupta G. Structure of a tumor-associated antigen containing a tandemly repeated immunodominant epitope. J. Biomol. Struct. Dyn 13(2), 245–260 (1995).
  • Gong J, Chen D, Kashiwaba M et al. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc. Natl Acad. Sci. USA 95(11), 6279–6283 (1998).
  • Tanaka Y, Koido S, Chen D, Gendler SJ, Kufe D, Gong J. Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice. Clin. Immunol. 101(2), 192–200 (2001).
  • Pecher G, Finn OJ. Induction of cellular immunity in chimpanzees to human tumor-associated antigen mucin by vaccination with MUC-1 cDNA-transfected Epstein–Barr virus-immortalized autologous B-cells. Proc. Natl Acad. Sci. USA 93(4), 1699–1704 (1996).
  • Ulmer JB, Donnelly JJ, Parker SE et al. A Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102), 1745–1749 (1993).
  • Raz E, Carson DA, Parker SE et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl Acad. Sci. USA 91(20), 9519–9523 (1994).
  • Graham RA, Burchell JM, Beverley P, Taylor-Papadimitriou J. Intramuscular immunisation with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic mouse tumor cells. Int. J. Cancer 65(5), 664–670 (1996).
  • Hareuveni M, Gautier C, Kieny MP, Wreschner D, Chambon P, Lathe R. Vaccination against tumor cells expressing breast cancer epithelial tumor antigen. Proc. Natl Acad. Sci. USA 87(23), 9498–9502 (1990).
  • Buller RM, Smith GL, Cremer K, Notkins AL, Moss B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317(6040), 813–815 (1985).
  • Bu D, Domenech N, Lewis J, Taylor-Papadimitriou J, Finn OJ. Recombinant vaccinia mucin vector: in vitro analysis of expression of tumor-associated epitopes for antibody and human cytotoxic T-cell recognition. J. Immunother. 14(2), 127–135 (1993).
  • Acres RB, Hareuveni M, Balloul JM, Kieny MP. Vaccinia virus MUC1 immunization of mice: immune response and protection against the growth of murine tumors bearing the MUC1 antigen. J. Immunother. 14(2), 136–143 (1993).
  • Akagi J, Hodge JW, McLaughlin JP et al. Therapeutic antitumor response after immunization with an admixture of recombinant vaccinia viruses expressing a modified MUC1 gene and the murine T-cell costimulatory molecule b7. J. Immunother. 20(1), 38–47 (1997).
  • Acres B, Apostolopoulos V, Balloul JM et al. MUC1-specific immune responses in human MUC1 transgenic mice immunized with various human MUC1 vaccines. Cancer Immunol. Immunother. 48(10), 588–594 (2000).
  • Liu M, Acres B, Balloul JM et al. Gene-based vaccines and immunotherapeutics. Proc. Natl Acad. Sci. USA 101(Suppl. 2), 14567–14571 (2004).
  • Maruyama K. Adenovirus-mediated MUC1 gene transduction into blood derived dendritic cels. J. Immunother. 24(4), 345–353 (2001).
  • Trevor KT, Hersh EM, Brailey J, Balloul JM, Acres B. Transduction of human dendritic cells with a recombinant modified vaccinia ankara virus encoding MUC1 and IL-2. Cancer Immunol. Immunother. 50(8), 397–407 (2001).
  • Chen L, Chen D, Manome Y, Dong Y, Fine HA, Kufe DW. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the df3/MUC1 promoter. J. Clin. Invest. 96(6), 2775–8272 (1995).
  • Jerome KR, Barnd DL, Bendt KM et al. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 51(11), 2908–2916 (1991).
  • Ioannides CG, Fisk B, Jerome KR et al. Cytotoxic T-cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J. Immunol. 151(7), 3693–3703 (1993).
  • MacLean GD, Miles DW, Rubens RD, Reddish MA, Longenecker BM. Enhancing the effect of theratope stn-klh cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J. Immunother. Emphasis Tumor Immunol. 19(4), 309–316 (1996).
  • Goydos JS, Elder E, Whiteside TL, Finn OJ, Lotze MT. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. 63(1), 298–304 (1996).
  • Ramanathan RK, Lee KM, McKolanis J et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with sb-as2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother.54(3), 254–264 (2005).
  • Gilewski T, Adluri S, Ragupathi G et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus qs-21. Clin. Cancer Res. 6(5), 1693–1701 (2000).
  • Karanikas V, Hwang LA, Pearson J et al. Antibody and T-cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100(11), 2783–2792 (1997).
  • Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96(9), 3102–3108 (2000).
  • Sodeik B, Doms RW, Ericsson M et al. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the golgi stacks. J. Cell Biol. 121(3), 521–541 (1993).
  • Hanisch FG, Schwientek T, Von Bergwelt-Baildon MS, Schultze JL, Finn O. O-linked glycans control glycoprotein processing by antigen-presenting cells: a biochemical approach to the molecular aspects of MUC1 processing by dendritic cells. Eur. J. Immunol. 33(12), 3242–3254 (2003).
  • Lai P, Rabinowich H, Crowley-Nowick PA et al. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin. Cancer Res.2(1), 161–173 (1996).
  • Scholl SM, Balloul JM, Le Goc G et al. Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J. Immunother. 23(5), 570–580 (2000).
  • Scholl S, Squiban P, Bizouarne N et al. Metastatic breast tumor regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2. J. Biomed Biotechnol.3, 194–201 (2003).
  • Pantuck AJ, van Ophoven A, Gitlitz BJ et al. Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J. Immunother. 27(3), 240–253 (2004).
  • Rochlitz C, Figlin R, Squiban P et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J. Gene Med. 5(8), 690–699 (2003).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T-lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100(14), 8372–8377 (2003).
  • Moniaux N, Andrianifahanana M, Brand RE, Batra SK. Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br. J. Cancer 91(9), 1633–1638 (2004).
  • Vlad AM, Muller S, Cudic M et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T-cells. J. Exp. Med. 196(11), 1435–1446 (2002).
  • Xu Y, Gendler SJ, Franco A. Designer glycopeptides for cytotoxic T-cell-based elimination of carcinomas. J. Exp. Med. 199(5), 707–716 (2004).
  • Vasir B, Avigan D, Wu Z et al. Dendritic cells induce MUC1 expression and polarization on human T-cells by an IL-7-dependent mechanism. J. Immunol. 174(4), 2376–2386 (2005).
  • Correa I, Plunkett T, Vlad A et al. Form and pattern of MUC1 expression on T-cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology 108(1), 32–41 (2003).
  • Nakamori S, Ota DM, Cleary KR, Shirotani K, Irimura T. MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 106(2), 353–361 (1994).
  • Guddo F, Giatromanolaki A, Koukourakis MI et al. MUC1 (episialin) expression in non-small cell lung cancer is independent of EGFR and c-erbB-2 expression and correlates with poor survival in node positive patients. J. Clin. Pathol.51(9), 667–671 (1998).
  • Wright SE, Kilinski L, Talib S et al. Cytotoxic T lymphocytes from humans with adenocarcinomas stimulated by native MUC1 mucin and a mucin peptide mutated at a glycosylation site. J. Immunother. 1, 2–10 (2000).
  • Lees CJ, Apostolopoulos V, Acres B et al. Immunotherapy with mannan-MUC1 and IL-12 in MUC1 transgenic mice. Vaccine 19(2–3), 158–162 (2000).
  • Grinstead JS, Koganty RR, Krantz MJ, Longenecker BM, Campbell AP. Effect of glycosylation on MUC1 humoral immune recognition: NMR studies of MUC1 glycopeptide-antibody interactions. Biochemistry 41(31), 9946–9961 (2002).
  • Karanikas V, Thynne G, Mitchell P et al. Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J. Immunother. 24(2), 172–183 (2001).
  • Xing PX, Michael M, Apostolopoulos V et al. Phase I study of synthetic MUC1 peptides in breast cancer. Internl J. Oncol. 6, 1283–1289 (1995).
  • Cloosen S, Thio M, Vanclee A et al. Mucin-1 is expressed on dendritic cells, both in vitro and in vivo. Int. Immunol. 16(11), 1561–1571 (2004).
  • Wykes M, MacDonald KP, Tran M et al. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J. Leukoc Biol. 72(4), 692–701 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.