48
Views
4
CrossRef citations to date
0
Altmetric
Review

Postgenomic approaches to cholera vaccine development

, , , &
Pages 337-346 | Published online: 09 Jan 2014

References

  • Kaper JB, Morris JG Jr, Levine MM. Cholera. Clin. Microbiol. Rev.8(1), 48–86 (1995).
  • Cholera vaccines. Wkly. Epidemiol. Rec.76(16), 117–124 (2001).
  • Levine MM, Black RE, Clements ML et al. Duration of infection-derived immunity to cholera. J. Infect. Dis.143(6), 818–820 (1981).
  • Morris JG Jr, Losonsky GE, Johnson JA et al. Clinical and immunologic characteristics of Vibrio cholerae O139 Bengal infection in North American volunteers. J. Infect. Dis.171(4), 903–908 (1995).
  • Levine MM, Nalin DR, Craig JP et al. Immunity of cholera in man: relative role of antibacterial versus antitoxic immunity. Trans. R. Soc. Trop. Med. Hyg.73(1), 3–9 (1979).
  • Freytag LC, Clements JD. Mucosal adjuvants. Vaccine23(15), 1804–1813 (2005).
  • Holmgren J, Svennerholm AM. Mechanisms of disease and immunity in cholera: a review. J. Infect. Dis.136(Suppl.), S105–S112 (1977).
  • Attridge SR, Rowley D. Prophylactic significance of the nonlipopolysaccharide antigens of Vibrio cholerae. J. Infect. Dis.148(5), 931–939 (1983).
  • Neoh SH, Rowley D. The antigens of Vibrio cholerae involved in the vibriocidal action of antibody and complement. J. Infect. Dis.121(5), 505–513 (1970).
  • Saha D, LaRocque RC, Khan AI et al. Incomplete correlation of serum vibriocidal antibody titer with protection from Vibrio cholerae infection in urban Bangladesh. J. Infect. Dis.189(12), 2318–2322 (2004).
  • Ryan ET, Calderwood SB. Cholera vaccines. J. Travel Med.8(2), 82–91 (2001).
  • Ali M, Emch M, von Seidlein L et al. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet366(9479), 44–49 (2005).
  • Clemens JD, Sack DA, Harris JR et al. Field trial of oral cholera vaccines in Bangladesh. Lancet2(8499), 124–127 (1986).
  • Clemens JD, Sack DA, Harris JR et al. Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet335(8684), 270–273 (1990).
  • Ryan E T, Calderwood SB, Qadri F. Live attenuated oral cholera vaccines. Expert Rev. Vaccines (2006) (Submitted).
  • Levine MM, Kaper JB, Herrington D et al. Safety, immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet2(8609), 467–470 (1988).
  • Richie EE, Punjabi NH, Sidharta YY et al. Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine18(22), 2399–2410 (2000).
  • Calain P, Chaine JP, Johnson E et al. Can oral cholera vaccination play a role in controlling a cholera outbreak? Vaccine22(19), 2444–2451 (2004).
  • Qadri F, Chowdhury MI, Faruque SM et al. Randomized, controlled study of the safety and immunogenicity of Peru-15, a live attenuated oral vaccine candidate for cholera, in adult volunteers in Bangladesh. J. Infect. Dis.192(4), 573–579 (2005).
  • Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science287(5459), 1816–1820 (2000).
  • de Jonge MI, Brosch R, Brodin P, Demangel C, Cole ST. Tuberculosis: from genome to vaccine. Expert Rev. Vaccines4(4), 541–551 (2005).
  • Maione D, Margarit I, Rinaudo CD et al. Identification of a universal group B streptococcus vaccine by multiple genome screen. Science309(5731), 148–150 (2005).
  • Heidelberg JF, Eisen JA, Nelson WC et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature406(6795), 477–483 (2000).
  • Mazel D, Dychinco B, Webb VA, Davies J. A distinctive class of integron in the Vibrio cholerae genome. Science280(5363), 605–608 (1998).
  • Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science272(5270), 1910–1914 (1996).
  • Albert MJ, Siddique AK, Islam MS et al. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet341(8846), 704 (1993).
  • Ramamurthy T, Garg S, Sharma R et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet341(8846), 703–704 (1993).
  • Comstock LE, Maneval D Jr, Panigrahi P et al. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect. Immun.63(1), 317–323 (1995).
  • Dziejman M, Balon E, Boyd D et al. Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease. Proc. Natl Acad. Sci. USA99(3), 1556–1561 (2002).
  • Dziejman M, Serruto D, Tam VC et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl Acad. Sci. USA102(9), 3465–3470 (2005).
  • Chen CY, Wu KM, Chang YC et al. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res.13(12), 2577–2587 (2003).
  • Makino K, Oshima K, Kurokawa K et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet361(9359), 743–749 (2003).
  • Chiang SL, Mekalanos JJ, Holden DW. In vivo genetic analysis of bacterial virulence. Annu. Rev. Microbiol.53, 129–154 (1999).
  • Angelichio MJ, Camilli A. In vivo expression technology. Infect. Immun.70(12), 6518–6523 (2002).
  • Camilli A, Beattie DT, Mekalanos JJ. Use of genetic recombination as a reporter of gene expression. Proc. Natl Acad. Sci. USA91(7), 2634–2638 (1994).
  • Camilli A, Mekalanos JJ. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol.18(4), 671–683 (1995).
  • Osorio CG, Crawford JA, Michalski J et al. Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect. Immun.73(2), 972–980 (2005).
  • Chiang SL, Mekalanos JJ. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol.27(4), 797–805 (1998).
  • Herrington DA, Hall RH, Losonsky G et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med.168(4), 1487–1492 (1988).
  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA84(9), 2833–2837 (1987).
  • Merrell DS, Hava DL, Camilli A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol.43(6), 1471–1491 (2002).
  • Handfield M, Brady LJ, Progulske-Fox A, Hillman JD. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol.8(7), 336–339 (2000).
  • Rollins SM, Peppercorn A, Hang L et al. In vivo induced antigen technology (IVIAT). Cell. Microbiol. 7(1), 1–9 (2005).
  • Deb DK, Dahiya P, Srivastava KK, Srivastava R, Srivastava BS. Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis (Edinb.)82(4–5), 175–182 (2002).
  • Kim YR, Lee SE, Kim CM et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect. Immun.71(10), 5461–5471 (2003).
  • John M, Kudva IT, Griffin RW et al. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect. Immun.73(5), 2665–2679 (2005).
  • Harris JB, Baresch-Bernal A, Rollins SM et al. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar typhi. (Submitted).
  • Hang L, John M, Asaduzzaman M et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae.Proc. Natl Acad. Sci. USA100(14), 8508–8513 (2003).
  • Hall RH, Losonsky G, Silveira AP et al. Immunogenicity of Vibrio cholerae O1 toxin-coregulated pili in experimental and clinical cholera. Infect. Immun.59(7), 2508–2512 (1991).
  • Asaduzzaman M, Ryan ET, John M et al. The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with cholera caused by Vibrio cholerae O1 and O139. Infect. Immun.72(8), 4448–4454 (2004).
  • Xu Q, Dziejman M, Mekalanos JJ. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl Acad. Sci. USA100(3), 1286–1291 (2003).
  • Merrell DS, Butler SM, Qadri F et al. Host-induced epidemic spread of the cholera bacterium. Nature417(6889), 642–645 (2002).
  • Bina J, Zhu J, Dziejman M et al. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl Acad. Sci. USA100(5), 2801–2806 (2003).
  • Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell99(6), 625–634 (1999).
  • LaRocque RC, Harris JB, Dziejman M et al. Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect. Immun.73(8), 4488–4493 (2005).
  • Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet363(9404), 223–233 (2004).
  • Guerrant RL, Carneiro-Filho BA, Dillingham RA. Cholera, diarrhea, and oral rehydration therapy: triumph and indictment. Clin. Infect. Dis.37(3), 398–405 (2003).
  • Cavailler P, Lucas M, Perroud V et al. Feasibility of a mass vaccination campaign using a two-dose oral cholera vaccine in an urban cholera-endemic setting in Mozambique. Vaccine (2005) (In press).
  • Albert MJ, Qadri F, Wahed MA et al. Supplementation with zinc, but not vitamin A, improves seroconversion to vibriocidal antibody in children given an oral cholera vaccine. J. Infect. Dis.187(6), 909–913 (2003).
  • Karlsen TH, Sommerfelt H, Klomstad S et al. Intestinal and systemic immune responses to an oral cholera toxoid B subunit whole-cell vaccine administered during zinc supplementation. Infect. Immun.71(7), 3909–3913 (2003).
  • Cooper PJ, Chico ME, Losonsky G et al. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J. Infect. Dis.182(4), 1199–1206 (2000).
  • Lagos R, Fasano A, Wasserman SS et al. Effect of small bowel bacterial overgrowth on the immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR. J. Infect. Dis.180(5), 1709–1712 (1999).
  • Qadri F, Bhuiyan TR, Dutta KK et al. Acute dehydrating disease cause by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut53, 62–69 (2004).
  • Harris JB, Khan AI, LaRocque RC et al. Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect. Immun.73(11), 7422–7427 (2005).
  • Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature409(6822), 860–921 (2001).
  • Stokes NR, Zhou X, Meltzer SJ, Kaper JB. Transcriptional responses of intestinal epithelial cells to infection with Vibrio cholerae. Infect. Immun.72(7), 4240–4248 (2004).
  • Patterson SD, Aebersold RH. Proteomics: The first decade and beyond. Nat. Genet.33(Suppl.), 311–323 (2003).
  • Fortune SM, Jaeger A, Sarracino DA et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl Acad. Sci. USA102(30), 10676–10681 (2005).
  • Davies DH, Liang X, Hernandez JE et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA102(3), 547–552 (2005).
  • Chang HS, Sack DA. Development of a novel in vitro assay (ALS assay) for evaluation of vaccine-induced antibody secretion from circulating mucosal lymphocytes. Clin. Diagn. Lab. Immunol.8(3), 482–488 (2001).
  • Qadri F, Ryan ET, Faruque AS et al. Antigen-specific immunoglobulin A antibodies secreted from circulating B cells are an effective marker for recent local immune responses in patients with cholera: Comparison to antibody-secreting cell responses and other immunological markers. Infect. Immun.71(8), 4808–4814 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.