657
Views
2
CrossRef citations to date
0
Altmetric
Editorial

Combination vaccines: design strategies and future trends

, , &
Pages 739-745 | Published online: 09 Jan 2014

References

  • Del Giudice G. Vaccination strategies: an overview. Vaccine21(Suppl.), S83–S88 (2003).
  • Clements C, Wesselingh S. Vaccine presentations and delivery technologies - what does the future hold? Expert Rev. Vaccines 4(3), 281–287 (2005).
  • Bar-Zeev N, Buttery J. Combination conjugate vaccines. Expert Opin. Drug. Saf.5(3), 351–360 (2006).
  • HSS, F.U.D.o. Guidance for industry for the evaluation of combination vaccines for prevention of diseases: production, testing and clinical studies. Rockville, MD, USA (1997).
  • van den Dobbelsteen G, van Dijken H, Pillai S, van Alphena L. Immunogenicity of a combination vaccine containing pneumococcal conjugates and meningococcal PorA OMVs. Vaccine24 (2006) (Epub ahead of print).
  • CDC. Recommended childhood immunization schedule: United States. MMWR (Recommendations & Reports)51, 31–33 (2002).
  • Yeh S, Ward J. Strategies for development of combination vaccines. Pediatr. Infect. Dis. J.20(Suppl. 11), S5–S9 (2001).
  • Pediatrics , A.A.o. Combination vaccines for childhood immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP), the American Academy of Pediatrics (AAP) and the American Academy of Family Physicians (AAFP). Pediatrics103, 1064–1077 (1999).
  • Rennels M. Combination vaccines. Pediatr. Infect. Dis. J.21, 255–257 (2002).
  • Kane A, Lloyd J, Zaffran M, Simonsen L, Kane M. Transmission of hepatitis B, C and human immunodeficiency virus through unsafe injections in the developing world: model-based regional estimates. Bull. World Health Organ.77, 801–807 (1999).
  • Hutin Y, Chen R. Injection safety: a global challenge. Bull. World Health Organ.77, 787–788 (1999).
  • King G, Hadler S. Simultaneous administration of childhood vaccines: an important public health policy that is safe and efficacious. Pediatr. Infect. Dis. J.13, 394–407 (1994).
  • Ball L, Falk L, Horne A, Finn T. Evaluating the immune response to combination vaccines. Clin. Infect. Dis.33(Suppl. 4), S299–S305 (2001).
  • Avery O, Goebel W. Chemo-immunological studies on conjugated carbohydrate-protein. Part II. Immunological specificity of synthetic sugar-protein antigens. J. Exp. Med.50, 533–550 (1929).
  • Tacken P, Torensma R, Figdor C. Targeting antigens to dendritic cellls in vivo. Immunobiology211, 599–608 (2006).
  • Burns S, Thrasher AJ. Dendritic cells: the bare bones of immunity. Curr. Biol.14, R965–R967 (2004).
  • Kaisho T, Akira S. Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med.3(4), 373–385 (2003).
  • Schutze M, Leclerc C, Jolivet M, Audibert F, Chedid L. Carrier-induced epitope suppression, a major issue for future synthetic vaccines. J. Immunol.135(4), 2319–2322 (1985).
  • Dagan R, Eskola J, Leclerc C, Leroy O. Reduced response to multiple vaccines sharing common protein epitopes that are administered simultaneously to infants. Infect. Immun.66(5), 2093–2098 (1998).
  • Daum RS, Zenko CE, Given GZ, Ballanco GA, Parikh H, Germino K. Magnitude of interference after dipththeria-tetanus toxoids-acellular pertussis/Hemophilus influenzae type b capsular polysaccharide-tetanus vaccination is related to the number of doses administered. J. Infect. Dis.184(10), 1293–1299 (2001).
  • Fattom A, Cho YH, Chu C, Fuller S, Fries L, Naso R. Epitope overload at the site of injection may result in suppression of hte immune response to combined capsular polysaccharide conjugate vaccines. Vaccine17(2), 126–133 (1999).
  • Williams J, Fox-Leyva L, Christensen C et al. Hepatitis A vaccine administration: comparison between jet-injector and needle injection. Vaccine18(18), 1939–1943 (2000).
  • Aguado T, Jodar L, Lloyd J, Lambert P. Injectable solid vaccines: role in future immunization? Bull. World Health Organ. Drug Inf. 12, 68–69 (1998).
  • WHO. Vaccines and biologicals annual report. WHO, Geneva WHO/V&B/99.01 (1998).
  • Turner MS, Giffard PM. Expression of Chlamydia psittaci and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus fermentum BR11 as fusion to bspA. Infect. Immun.67(10), 5486–5489 (1999).
  • Gentschev I, Dietrich G, Spreng S et al. Delivery of protein antigens and DNA by virulence-attenuated strains of Salmonella typhimurium and Listeria monocytogenes. J. Biotechnol.83(1–2), 19–26 (2000).
  • Eko FO, Witte A, Huter V et al. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine17, 1643–1649 (1999).
  • Igietseme JU, Black CM, Caldwell HD. Chlamydia vaccine: strategies and status. BioDrugs16(1), 19–35 (2002).
  • McMillan L, He Q, Ifere G et al. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol. Med. Microbiol. (2006) (Epub ahead of print).
  • Manickan E, Karem KL, Rouse BT. DNA vaccines: a modern gimmick or a boon to vaccinology. Crit. Rev. Immunol.17, 139–154 (1997).
  • Seder RA, Gurunathan S. DNA vaccine – designer vaccines for the 21st century. N. Engl. J. Med.341(4), 277–278 (1999).
  • liu MA, Hilleman MR , Kurth R. DNA vaccines: a new era in vaccinology. Ann. NY Acad. Sci. (1995).
  • Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL , Barber BH. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J. Immunol.158(10), 4591–4601 (1997).
  • Gurunathan S, Irvine KR, Wu CY et al. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J. Immunol.161(9), 4563–4571 (1998).
  • Lu H, Xing Z Brunham RC. GM-CSF transgene-based adjuvant allows the establishment of protective mucosal immunity following vaccination with inactivated Chlamydia trachomatis. J. Immunol.169(11), 6324–6331 (2002).
  • Murdin AD, Dunn P, Sodoyer R et al. Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis.181(Suppl. 3), S544–S551 (2000).
  • Babiuk LA, Tikoo SK. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J. Biotechnol.83(1–2), 105–113 (2000).
  • Hewson R. RNA viruses: emerging vectors for vaccination and gene therapy. Mol. Med. Today6(1), 28–35 (2000).
  • Bennink JR, Yewdell JW. Recombinant vaccinia viruses as vectors for studying T lymphocyte specificity and function. Curr. Top. Microbiol. Immunol.163, 153–184 (1990).
  • Palese P, Zheng H, Engelhardt OG, Pleschka S, Garcia-Sastre A. Negative-strand RNA viruses: genetic engineering and applications. Proc. Natl Acad. Sci. USA93(21), 11354–11358 (1996).
  • Igietseme JU, He Q, Eko FO et al. Development of vaccines to prevent chlamydial STDs. Mucosal Immunol. Update13(4), 12–17 (2005).
  • Nakaya T, Cros J, Park M et al. Recombinant Newcastle disease virus as a vaccine vector. J .Virol.75(23), 11868–11873 (2001).
  • Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J .Virol.80(3), 1130–1139 (2006).
  • Schlesinger S, Dubensky TW. Alphavirus vectors for gene expression and vaccine. Curr. Opin. Biotechnol.10, 434–439 (1999).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun.73(6), 3587–3597 (2005).
  • Schodel F, Peterson D, Milich D. Hepatitis B virus core and e antigen: immune recognition and use as a vaccine carrier moiety. Intervirology39(1–2), 104–110 (1996).
  • Milich DR, Hughes J, Jones J, Sallberg M, Phillips TR. Conversion of poorly immunogenic malaria repeat sequences into a highly immunogenic vaccine candidate. Vaccine20(5–6), 771–788 (2001).
  • Stanley MA. Human papillomavirus vaccines. Rev. Med. Virol.16(3), 139–149 (2006).
  • Pattenden LK, Middelberg AP, Niebert M, Lipin DI. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol.23(10), 523–529 (2005).
  • Saito H, Frleta D, Dubsky P, Palucka A. Dendritic cell-based vaccination against cancer. Hematol. Oncol. Clin. North. Am.20(3), 689–710 (2006).
  • Oelke M, Krueger C, Schneck J. Technological advances in adoptive immunotherapy. Drugs Today41(1), 13–21 (2005).
  • Yannelli J, Wroblewski J. On the road to a tumor cell vaccine: 20 years of cellular immunotherapy. Vaccine23(1), 97–113 (2004).
  • Colaco CA. Why are dendritic cells central to cancer immunotherapy? Mol. Med. Today5(1), 14–17 (1999).
  • Igietseme JU, Ananaba GA, Bolier J et al. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for enhanced specific Th1 induction: potential for cellular vaccine development. J. Immunol.164(4), 4212–4219 (2000).
  • Hoffman DM, Gitlitz BJ, Belldegrun A, Figlin RA. Adoptive cellular therapy. Semin. Oncol.27(2), 221–233 (2000).
  • Hajek R, Butch AW. Dendritic cell biology and the application of dendritic cells to immunotherapy of multiple myeloma. Med. Oncol.17(1), 2–15 (2000).
  • Citterio S, Rescigno M, Foti M et al. Dendritic cells as natural adjuvants. Methods19(1), 142–147 (1999).
  • Moore T, Ekworomadu C, Eko F et al. Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J. Infect. Dis.188(4), 617–624 (2003).
  • Heijnen IAFM, van Vugt MJ, Fanger NA et al. Antigen targeting to myeloid-specific human FcγRI/CD64 triggers enhanced antibody responses in transgenic mice. J. Clin. Invest.97(2), 331–338 (1996).
  • Gosselin EJ, Wardwell K, Gosselin DR, Alter N, Fisher JL, Guyre PM. Enhanced antigen presentation using human Fcγ receptor (monocyte/macrophage)-specific immunogens. J. Immunol.149, 3477–3481 (1992).
  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potential and effector functions. Nature401, 708–712 (1999).
  • Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. Memory and flexibility of cytokine gene expression as separable properties of human Th1 and Th2 lymphocytes. Nature Immunol.4, 78–86 (2003).
  • Schneider H, Downey J, Smith A et al. Reversal of the TCR stop signal by CTLA-4. Science313(5795), 1972–1975 (2006).
  • Thompson RH, Allison J, Kwon E. Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy for the treatment of prostate cancer. Urol. Oncol.24(5), 442–447 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.