78
Views
7
CrossRef citations to date
0
Altmetric
Review

Cancer vaccines and tumor dormancy: a long-term struggle between host antitumor immunity and persistent cancer cells?

Pages 773-781 | Published online: 09 Jan 2014

References

  • Uhr JW, Marches R. Dormancy in a model of murine B cell lymphoma. Semin. Cancer Biol,11(4), 277–283 (2001).
  • Davis TA, Maloney DG, Czerwinski DK, Liles TM, Levy R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin's lymphoma without eradicating the malignant clone. Blood92(4), 1184–1190 (1998).
  • Allard WJ, Matera J, Miller MC et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res.10(20), 6897–6904 (2004).
  • Meng S, Tripathy D, Frenkel EP et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res.10(24), 8152–8162 (2004).
  • Bhatia R, Holtz M, Niu N et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood101(12), 4701–4707 (2003).
  • Chomel JC, Brizard F, Veinstein A et al. Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-α therapy or allogeneic bone marrow transplantation. Blood95(2), 404–408 (2000).
  • von dem Borne PA, van Luxemburg-Heijs SA, Heemskerk MH et al. Molecular persistence of chronic myeloid leukemia caused by donor T cells specific for lineage-restricted maturation antigens not recognizing immature progenitor-cells. Leukemia20(6), 1040–1046 (2006).
  • Naumov GN, Bender E, Zurakowski D et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst.98(5), 316–325 (2006).
  • Indraccolo S, Stievano L, Minuzzo S et al. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc. Natl Acad. Sci. USA103(11), 4216–4221 (2006).
  • Almog N, Henke V, Flores L et al. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J.20(7), 947–949 (2006).
  • Verheul HM, Voest EE, Schlingemann RO. Are tumours angiogenesis-dependent? J. Pathol.202(1), 5–13 (2004).
  • Page K, Uhr JW. Mathematical models of cancer dormancy. Leuk. Lymphoma46(3), 313–327 (2005).
  • Hsueh RC, Hammill AM, Lee JA, Uhr JW, Scheuermann RH. Activation of the Syk tyrosine kinase is insufficient for downstream signal transduction in B lymphocytes. BMC Immunol.3(1), 16(2002).
  • Farrar JD, Katz KH, Windsor J et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-γ in establishing and maintaining the tumor-dormant state. J. Immunol.162(5), 2842–2849 (1999).
  • Marches R, Scheuermann RH, Uhr JW. Cancer dormancy: role of cyclin-dependent kinase inhibitors in induction of cell cycle arrest mediated via membrane IgM. Cancer Res.58(4), 691–697 (1998).
  • Vitetta ES, Tucker TF, Racila E et al. Tumor dormancy and cell signaling. V. Regrowth of the BCL1 tumor after dormancy is established. Blood89(12), 4425–4436 (1997).
  • Racila E, Scheuermann RH, Picker LJ et al. Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med.181(4), 1539–1550 (1995).
  • Marches R, Racila E, Tucker TF et al. Tumour dormancy and cell signalling – III: Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells. Ther. Immunol.2(3), 125–136 (1995).
  • Scheuermann RH, Racila E, Tucker T et al. Lyn tyrosine kinase signals cell cycle arrest but not apoptosis in B-lineage lymphoma cells. Proc. Natl Acad. Sci. USA91(9), 4048–4052 (1994).
  • Yefenof E, Picker LJ, Scheuermann RH et al. Cancer dormancy: isolation and characterization of dormant lymphoma cells. Proc. Natl Acad. Sci. USA90(5), 1829–1833 (1993).
  • Uhr JW, Tucker T, May RD, Siu H, Vitetta ES. Cancer dormancy: studies of the murine BCL1 lymphoma. Cancer Res.51(18Suppl.), S5045–S5053 (1991).
  • Siu H, Vitetta ES, May RD, Uhr JW. Tumor dormancy. I. Regression of BCL1 tumor and induction of a dormant tumor state in mice chimeric at the major histocompatibility complex. J. Immunol.137(4), 1376–1382 (1986).
  • Pop LM, Smallshaw JE, Tucker TF, Stevenson FK, Vitetta ES. Failure of vaccination with idiotypic protein or DNA, (+/-IL-2), the depletion of regulatory T cells, or the blockade of CTLA-4 to prolong dormancy in mice with BCL1 lymphoma. J. Immunother.28(6), 525–534 (2005).
  • Vereecque R, Buffenoir G, Gonzalez R et al. A new murine aggressive leukemic model. Leuk. Res.23(4), 415–416 (1999).
  • Saudemont A, Buffenoir G, Denys A et al. Gene transfer of CD154 and IL12 cDNA induces an anti-leukemic immunity in a murine model of acute leukemia. Leukemia16(9), 1637–1644 (2002).
  • Vereecque R, Buffenoir G, Preudhomme C et al. Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease. Gene Ther.7(15), 1312–1316 (2000).
  • Saudemont A, Quesnel B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood104(7), 2124–2133 (2004).
  • Roberts WM, Estrov Z, Ouspenskaia MV et al. Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N. Engl. J. Med.336(5), 317–323 (1997).
  • Zhou G, Lu Z, McCadden JD, Levitsky HI, Marson AL. Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J. Exp. Med.200(12), 1581–1592 (2004).
  • Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology115(3), 325–336 (2005).
  • Schirrmacher V. T-cell immunity in the induction and maintenance of a tumour dormant state. Semin. Cancer Biol.11(4), 285–295 (2001).
  • Muller M, Gounari F, Prifti S et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res.58(23), 5439–5446 (1998).
  • Khazaie K, Prifti S, Beckhove P et al. Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc. Natl Acad. Sci. USA91(16), 7430–7434 (1994).
  • Yamshchikov GV, Mullins DW, Chang CC et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J. Immunol.174(11), 6863–6871 (2005).
  • Subudhi SK, Alegre ML, Fu YX. The balance of immune responses: costimulation verse coinhibition. J. Mol. Med.83(3), 193–202 (2005).
  • Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu. Rev. Immunol.23, 515–548 (2005).
  • Subudhi SK, Zhou P, Yerian LM et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J. Clin. Invest.113(5), 694–700 (2004).
  • Strome SE, Dong H, Tamura H et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res.63(19), 6501–6505 (2003).
  • Dong H, Strome SE, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med.8(8), 793–800 (2002).
  • Curiel TJ, Wei S, Dong H et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med.9(5), 562–567 (2003).
  • Wintterle S, Schreiner B, Mitsdoerffer M et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res.63(21), 7462–7467 (2003).
  • Iwai Y, Ishida M, Tanaka Y et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99(19), 12293–12297 (2002).
  • Tsushima F, Tanaka K, Otsuki N et al. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol.42(3), 268–274 (2006).
  • Blank C, Kuball J, Voelkl S et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int. J. Cancer119(2), 317–327 (2006).
  • Thompson RH, Kuntz SM, Leibovich BC et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res.66(7), 3381–3385 (2006).
  • Ghebeh H, Mohammed S, Al-Omair A et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia8(3), 190–198 (2006).
  • Salih HR, Wintterle S, Krusch M et al. The role of leukemia-derived B7-H1 (PD-L1) in tumor-T-cell interactions in humans. Exp. Hematol.34(7), 888–894 (2006).
  • Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol. Immunother.54(4), 307–314 (2005).
  • Hirano F, Kaneko K, Tamura H et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res.65(3), 1089–1096 (2005).
  • He L, Zhang G, He Y et al. Blockade of B7-H1 with sPD-1 improves immunity against murine hepatocarcinoma. Anticancer Res.25(5), 3309–3313 (2005).
  • Thompson RH, Webster WS, Cheville JC et al. B7-H1 glycoprotein blockade: a novel strategy to enhance immunotherapy in patients with renal cell carcinoma. Urology66(5 Suppl.), 10–14 (2005).
  • Thompson RH, Gillett MD, Cheville JC et al. Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer104(10), 2084–2091 (2005).
  • He YF, Zhang GM, Wang XH et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J. Immunol.173(8), 4919–4928 (2004).
  • Thompson RH, Gillett MD, Cheville JC et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl Acad. Sci. USA101(49), 17174–17179 (2004).
  • Vereecque R, Saudemont A, Quesnel B. Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia18(7), 1223–1230 (2004).
  • Konishi J, Yamazaki K, Azuma M et al. B7-H1 Expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin. Cancer Res.10(15), 5094–5100 (2004).
  • Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J. Mol. Med.81(5), 281–287 (2003).
  • Geng H, Zhang GM, Xiao H et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int. J. Cancer118(11), 2657–2664 (2006).
  • Barber DL, Wherry EJ, Masopust D et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature439(7077), 682–687 (2006).
  • Lohr J, Knoechel B, Jiang S, Sharpe AH, Abbas AK. The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat. Immunol.4(7), 664–669 (2003).
  • Saverino D, Tenca C, Zarcone D et al. CTLA-4 (CD152) inhibits the specific lysis mediated by human cytolytic T lymphocytes in a clonally distributed fashion. J. Immunol.162(2), 651–658 (1999).
  • Lang TJ, Nguyen P, Peach R, Gause WC, Via CS. In vivo CD86 blockade inhibits CD4 T cell activation, whereas CD80 blockade potentiates CD8 T cell activation and CTL effector function. J. Immunol.168(8), 3786–3792 (2002).
  • Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol.18(2), 206–213 (2006).
  • Kirkwood JM, Moschos S, Wang W. Strategies for the development of more effective adjuvant therapy of melanoma: current and future explorations of antibodies, cytokines, vaccines, and combinations. Clin. Cancer Res.12(7 Pt 2), S2331–S2336 (2006).
  • Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest.116(7), 1935–1945 (2006).
  • Korman A, Yellin M, Keler T. Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr. Opin. Investig. Drugs6(6), 582–591 (2005).
  • Ribas A, Camacho LH, Lopez-Berestein G et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol.23(35), 8968–8977 (2005).
  • Tirapu I, Huarte E, Guiducci C et al. Low surface expression of B7–1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res.66(4), 2442–2450 (2006).
  • Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer3(12), 895–902 (2003).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3(7), 730–737 (1997).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65(20), 9328–9337 (2005).
  • Grichnik JM, Burch JA, Schulteis RD et al. Melanoma, a tumor based on a mutant stem cell? J. Invest. Dermatol.126(1), 142–153 (2006).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100(7), 3983–3988 (2003).
  • Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell121(6), 823–835 (2005).
  • Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat. Genet.24(1), 57–60 (2000).
  • Shachaf CM, Felsher DW. Rehabilitation of cancer through oncogene inactivation. Trends Mol. Med.11(7), 316–321 (2005).
  • Shachaf CM, Felsher DW. Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res.65(11), 4471–4474 (2005).
  • Shachaf CM, Kopelman AM, Arvanitis C et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431(7012), 1112–1117 (2004).
  • Beck KE, Blansfield JA, Tran KQ et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol.24(15), 2283–2289 (2006).
  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11(2), 141–151 (1999).
  • Nishimura H, Okazaki T, Tanaka Y et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science291(5502), 319–322 (2001).
  • Ansari MJ, Salama AD, Chitnis T et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med.198(1), 63–69 (2003).
  • Zhu B, Guleria I, Khosroshahi A et al. Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J. Immunol.176(6), 3480–3489 (2006).
  • Salama AD, Chitnis T, Imitola J et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med.198(1), 71–78 (2003).
  • Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295(5562), 2097–2100 (2002).
  • Tajima F, Kawatani T, Endo A, Kawasaki H. Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia. Leukemia10(3), 478–482 (1996).
  • Nowbakht P, Ionescu MC, Rohner A et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood105(9), 3615–3622 (2005).
  • Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D. NK cells: innate immunity against hematological malignancies? Trends Immunol.25(6), 328–333 (2004).
  • Costello RT, Sivori S, Marcenaro E et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood99(10), 3661–3667 (2002).
  • Fauriat C, Just-Landi S, Mallet F et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemic cells in NCRdull phenotype induction. Blood (2006) (Epub ahead of print).
  • Saudemont A, Jouy N, Hetuin D, Quesnel B. NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express B7-H1 that stimulates T cells. Blood105(6), 2428–2435 (2005).
  • Tannenbaum CS, Tubbs R, Armstrong D et al. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J. Immunol.161(2), 927–932 (1998).
  • Kanegane C, Sgadari C, Kanegane H et al. Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J. Leukoc. Biol.64(3), 384–392 (1998).
  • Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol.22, 891–928 (2004).
  • Taub DD, Sayers TJ, Carter CR, Ortaldo JR. α and β chemokines induce NK cell migration and enhance NK-mediated cytolysis. J. Immunol.155(8), 3877–3888 (1995).
  • Inngjerdingen M, Rolstad B, Ryan JC. Activating and inhibitory Ly49 receptors modulate NK cell chemotaxis to CXC chemokine ligand (CXCL) 10 and CXCL12. J. Immunol.171(6), 2889–2895 (2003).
  • Romagnani P, Annunziato F, Lazzeri E et al. Interferon-inducible protein 10, monokine induced by interferon γ, and interferon-inducible T-cell α chemoattractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) αβ+ CD8+ single-positive T cells, TCR γδ+ T cells, and natural killer-type cells in human thymus. Blood97(3), 601–607 (2001).
  • Dufour JH, Dziejman M, Liu MT et al. IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol.168(7), 3195–3204 (2002).
  • Qin Z, Schwartzkopff J, Pradera F et al. A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res.63(14), 4095–4100 (2003).
  • Zingoni A, Sornasse T, Cocks BG et al. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J. Immunol.173(6), 3716–3724 (2004).
  • Hanna J, Gonen-Gross T, Fitchett J et al. Novel APC-like properties of human NK cells directly regulate T cell activation. J. Clin. Invest.114(11), 1612–1623 (2004).
  • Burns LJ, Weisdorf DJ, DeFor TE et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a Phase I/II trial. Bone Marrow Transplant.32(2), 177–186 (2003).
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in cancer patients. Blood (2005).
  • Beyer M, Schultze JL. Regulatory T cells in cancer. Blood108(3), 804–811 (2006).
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood107(6), 2409–2414 (2006).
  • Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood107(2), 628–636 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.