116
Views
13
CrossRef citations to date
0
Altmetric
Review

Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development

, , , &
Pages 183-191 | Published online: 09 Jan 2014

References

  • Hayes EB, Gubler DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu. Rev. Med.57, 181–194 (2006).
  • Byrne SN, Halliday GM, Johnston LJ, King NJ. Interleukin-1β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J. Invest. Dermatol.117(3), 702–709 (2001).
  • Samuel MA, Diamond MS. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol.80(19), 9349–9360 (2006).
  • Busch MP, Wright DJ, Custer B et al. West Nile virus infections projected from blood donor screening data, United States, 2003. Emerg. Infect. Dis.12(3), 395–402 (2006).
  • Carson PJ, Konweko P, Wold KS et al. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin. Infect. Dis.43(6), 723–730 (2006).
  • Griffin DE. Immune responses to RNA-virus infections of the CNS. Nat. Rev. Immunol.3(6), 493–502 (2003).
  • Morrey JD, Smee DF, Sidwell RW, Tseng C. Identification of active antiviral compounds against a New York isolate of West Nile virus. Antiviral Res.55(1), 107–116 (2002).
  • Diamond MS, Zachariah M, Harris E. Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology304(2), 211–221 (2002).
  • Morrey JD, Day CW, Julander JG, Blatt LM, Smee DF, Sidwell RW. Effect of interferon-α and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir. Chem. Chemother.15(2), 101–109 (2004).
  • Diamond MS. Development of effective therapies against West Nile virus infection. Expert Rev. Anti Infect. Ther.3(6), 931–944 (2005).
  • Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E. Modulation of dengue virus infection in human cells by α, β, and γ interferons. J. Virol.74(11), 4957–4966 (2000).
  • Rahal JJ, Anderson J, Rosenberg C, Reagan T, Thompson LL. Effect of interferon-α2b therapy on St Louis viral meningoencephalitis: clinical and laboratory results of a pilot study. J. Infect. Dis.190(6), 1084–1087 (2004).
  • Ben-Nathan D, Lustig S, Tam G et al. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice antibody prophylaxis and therapy for flavivirus encephalitis infections. J. Infect. Dis.188(1), 5–12 (2003).
  • Oliphant T, Engle M, Nybakken GE et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med.11(6), 522–530 (2005).
  • Roehrig JT, Staudinger LA, Hunt AR, Mathews JH, Blair CD. Antibody prophylaxis and therapy for flavivirus encephalitis infections. Ann. NY Acad. Sci.951, 286–297 (2001).
  • Shimoni Z, Niven MJ, Pitlick S, Bulvik S. Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg. Infect. Dis.7(4), 759 (2001).
  • Hamdan A, Green P, Mendelson E, Kramer MR, Pitlik S, Weinberger M. Possible benefit of intravenous immunoglobulin therapy in a lung transplant recipient with West Nile virus encephalitis. Transpl. Infect. Dis.4(3), 160–162 (2002).
  • Haley M, Retter AS, Fowler D, Gea-Banacloche J, O’Grady NP. The role for intravenous immunoglobulin in the treatment of West Nile virus encephalitis. Clin. Infect. Dis.37(6), 88–90 (2003).
  • Brinton MA. The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu. Rev. Microbiol.56, 371–402 (2002).
  • Kaufmann B, Nybakken GE, Chipman PR et al. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc. Natl Acad. Sci. USA103(33), 12400–12404 (2006).
  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ. Structure of West Nile virus. Science302(5643), 248 (2003).
  • Chung KM, Nybakken GE, Thompson BS et al. Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through Fc γ receptor-dependent and -independent mechanisms. J. Virol.80(3), 1340–1351 (2006).
  • Henchal EA, Henchal LS, Schlesinger JJ. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol.69(Pt 8), 2101–2107 (1988).
  • Roehrig JT. Antigenic structure of flavivirus proteins. Adv. Virus. Res.59, 141–175 (2003).
  • Wong SJ, Boyle RH, Demarest VL et al. Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St Louis encephalitis virus infections and from flavivirus vaccination. J. Clin. Microbiol.41(9), 4217–4223 (2003).
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol.3(1), 13–22 (2005).
  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature375(6529), 291–298 (1995).
  • Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH. Crystal structure of the West Nile virus envelope glycoprotein. J. Virol.80(23), 11467–11474 (2006).
  • Beasley DWC, Whiteman MC, Zhang S et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol.79(13), 8339–8347 (2005).
  • Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature427(6972), 313–319 (2004).
  • Kuhn RJ, Zhang W, Rossmann MG et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell108(5), 717–725 (2002).
  • Wu KP, Wu CW, Tsao YP et al. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J. Biol. Chem.278(46), 46007–46013 (2003).
  • Volk DE, Beasley DW, Kallick DA, Holbrook MR, Barrett AD, Gorenstein DG. Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J. Biol. Chem.279(37), 38755–38761 (2004).
  • Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature437(7059), 764–769 (2005).
  • Throsby M, Geuijen C, Goudsmit J et al. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile virus. J. Virol.80(14), 6982–6992 (2006).
  • Gould LH, Sui J, Foellmer H et al. Protective and therapeutic capacity of human single-chain Fv–Fc fusion proteins against West Nile virus. J. Virol.79(23), 14606–14613 (2005).
  • Sanchez MD, Pierson TC, McAllister D et al. Characterization of neutralizing antibodies to West Nile virus. Virology336(1), 70–82 (2005).
  • Hangartner L, Senn BM, Ledermann B et al. Antiviral immune responses in gene-targeted mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies. Proc. Natl Acad. Sci. USA100(22), 12883–12888 (2003).
  • Monath TP, Liu J, Kanesa-Thasan N et al. A live-attenuated recombinant West Nile virus vaccine. Proc. Natl Acad. Sci. USA103(17), 6694–6699 (2006).
  • Gea-Banacloche J, Johnson RT, Bagic A, Butman JA, Murray PR, Agrawal AG. West Nile virus: pathogenesis and therapeutic options. Ann. Intern. Med.140(7), 545–553 (2004).
  • Beasley DW, Barrett AD. Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J. Virol.76(24), 13097–13100 (2002).
  • Li L, Barrett AD, Beasley DW. Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology335(1), 99–105 (2005).
  • Beasley DW, Li L, Suderman MT, Barrett AD. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology296(1), 17–23 (2002).
  • Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cell. J. Virol.75(16), 7769–7773 (2001).
  • Hawkes RA, Lafferty KJ. The enchancement of virus infectivity by antibody. Virology33(2), 250–261 (1967).
  • Gould EA, Buckley A. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J. Gen. Virol.70(6), 1605–1608 (1989).
  • Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science239(4839), 476–481 (1988).
  • Cardosa MJ. Dengue vaccine design: issues and challenges. Br. Med. Bull.54(2), 395–405 (1998).
  • Cardosa MJ, Gordon S, Hirsch S, Springer TA, Porterfield JS. Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J. Virol.57(3), 952–959 (1986).
  • Iankov ID, Pandey M, Harvey M, Griesmann GE, Federspiel MJ, Russell SJ. Immunoglobulin G antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response. J. Virol.80(17), 8530–8540 (2006).
  • Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev. Med. Virol.13(6), 387–398 (2003).
  • Tirado SM, Yoon KJ. Antibody-dependent enhancement of virus infection and disease. Viral Immunol.16(1), 69–86 (2003).
  • Pierson TC, Sanchez MD, Puffer BA et al. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology346(1), 53–65 (2006).
  • Engle MJ, Diamond MS. Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J. Virol.77(24), 12941–12949 (2003).
  • Diamond MS, Sitati EM, Friend LD, Higgs S, Shrestha B, Engle M. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med.198(12), 1853–1862 (2003).
  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol.77(4), 2578–2586 (2003).
  • Shrestha B, Diamond MS. Role of CD8+ T cells in control of West Nile virus infection. J. Virol.78(15), 8312–8321 (2004).
  • Samina I, Khinich Y, Simanov M, Malkinson M. An inactivated West Nile virus vaccine for domestic geese-efficacy study and a summary of 4 years of field application. Vaccine23(41), 4955–4958 (2005).
  • Kahler SC. APHIS: West Nile virus vaccine safe for use. J. Am. Vet. Med. Assoc.223(4), 416–418 (2003).
  • Monath TP. Yellow fever. In: Vaccines. Plotkin SA, Orenstein WA (Eds). WB Saunders, Oxford, UK, 815–879 (1999).
  • Theiler M, Smith HH. The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 65, 787–800 (1937). Rev. Med. Virol.10(1), 6–16 (2000).
  • Monath TP. Prospects for development of a vaccine against the West Nile virus. Ann. NY Acad. Sci.951, 1–12 (2001).
  • Arroyo J, Miller C, Catalan J et al. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol.78(22), 12497–12507 (2004).
  • Khromava AY, Eidex RB, Weld LH et al. Yellow fever vaccine: an updated assessment of advanced age as a risk factor for serious adverse events. Vaccine23(25), 3256–3263 (2005).
  • Despres P, Combredet C, Frenkiel MP, Lorin C, Brahic M, Tangy F. Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J. Infect. Dis.191(2), 207–214 (2005).
  • Pletnev AG, Swayne DE, Speicher J, Rumyantsev AA, Murphy BR. Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine24(40–41), 6392–6404 (2006).
  • Seligman SJ, Gould EA. Live flavivirus vaccines: reasons for caution. Lancet363(9426), 2073–2075 (2004).
  • Schuler LA, Khaitsa ML, Dyer NW, Stoltenow CL. Evaluation of an outbreak of West Nile virus infection in horses: 569 cases (2002). J. Am. Vet. Med. Assoc.225(7), 1084–1089 (2004).
  • Yang SE, Pan MJ, Tseng HF, Liau MY. The efficacy of mouse-brain inactivated Nakayama strain Japanese encephalitis vaccine – results from 30 years experience in Taiwan. Vaccine24(14), 2669–2673 (2006).
  • Karaca K, Bowen R, Austgen LE et al. Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine23(29), 3808–3813 (2005).
  • Khanam S, Etemad B, Khanna N, Swaminathan S. Induction of neutralizing antibodies specific to dengue virus serotypes 2 and 4 by a bivalent antigen composed of linked envelope domains III of these two serotypes. Am. J. Trop. Med. Hyg.74(2), 266–277 (2006).
  • Khanam S, Khanna N, Swaminathan S. Induction of neutralizing antibodies and T cell responses by dengue virus type 2 envelope domain III encoded by plasmid and adenoviral vectors. Vaccine24(42-43), 6513–6525 (2006).
  • Konishi E, Kosugi S, Imoto J. Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine24(12), 2200–2207 (2006).
  • Lieberman MM, Clements DE, Ogata S et al. Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine25(3), 414–423 (2006).
  • Iglesias MC, Frenkiel MP, Mollier K, Souque P, Despres P, Charneau P. A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J. Gene Med.8(3), 265–274 (2006).
  • Simmons M, Porter KR, Hayes CG, Vaughn DW, Putnak R. Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques. J. Virol.80(19), 9577–9585 (2006).
  • Moser C, Metcalfe IC, Viret JF. Virosomal adjuvanted antigen delivery systems. Expert Rev. Vaccines2(2), 189–196 (2003).
  • Just M, Berger R, Dreschsler H, Brantschen S, Gluck R. A single vaccination with an inactivated hepatitis A liposome vaccine induces protective antibodies after only two weeks. Vaccine10(11), 737–739 (1992).
  • Mayorga Perez O, Herzog C, Zellmeyer M, Loaisiga A, Frosner G, Egger M. Efficacy of virosome hepatitis A vaccine in young children in Nicaragua: randomized placebo-controlled trial. J. Infect. Dis.188(5), 671–677 (2003).
  • Wu SC, Yu CH, Lin CW, Chu IM. The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity. Vaccine21(19–20), 2516–2522 (2003).
  • Kutubuddin M, Gore MM, Banerjee K, Ghosh SN, Kolaskar AS. Analysis of computer-predicted antibody inducing epitope on Japanese encephalitis virus. Acta Virol.37(6), 417–428 (1993).
  • Livingston PG, Kurane I, Lai CJ, Bray M, Ennis FA. Recognition of envelope protein by dengue virus serotype-specific human CD4+ CD8- cytotoxic T-cell clones. J. Virol.68(5), 3283–3288 (1994).
  • Aihara H, Takasaki T, Matsutani T, Suzuki R, Kurane I. Establishment and characterization of Japanese encephalitis virus-specific, human CD4(+) T-cell clones: flavivirus cross-reactivity, protein recognition, and cytotoxic activity. J. Virol.72(10), 8032–8036 (1998).
  • Livingston PG, Kurane I, Dai LC et al. Dengue virus-specific, HLA-B35-restricted, human CD8+ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities. J. Immunol.154(3), 1287–1295 (1995).
  • Rothman AL, Kurane I, Ennis FA. Multiple specificities in the murine CD4+ and CD8+ T-cell response to dengue virus. J. Virol.70(10), 6540–6546 (1996).
  • Zulueta A, Martin J, Hermida L et al. Amino acid changes in the recombinant dengue 3 envelope domain III determine its antigenicity and immunogenicity in mice. Virus Res.121(1), 65–73 (2006).
  • Mota J, Acosta M, Argotte R, Figueroa R, Mendez A, Ramos C. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine23(26), 3469–3476 (2005).
  • Glass WG, McDermott DH, Lim JK et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med.203(1), 35–40 (2006).
  • Yakub I, Lillibridge KM, Moran A et al. Single nucleotide polymorphisms in genes for 2´-5´-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection. J. Infect. Dis.192(10), 1741–1748 (2005).

Websites

  • US CDC. West Nile virus www.cdc.gov/ncidod/dvbid/westnile/
  • US CDC. Bioterrorism agents/diseases www.bt.cdc.gov/Agent/agentlist.asp
  • US FDA www.accessdata.fda.gov/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.