369
Views
65
CrossRef citations to date
0
Altmetric
Review

Bacterial ghosts as adjuvant particles

, , &
Pages 241-253 | Published online: 09 Jan 2014

References

  • Gupta RK, Chang AC, Griffin P, Rivera R, Siber GR. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine14, 1412–1416 (1996).
  • Ulanova M, Tarkowski A, Hahn-Zoric M, Hanson LA. The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. Immun.69(2), 1151–1159 (2001).
  • Shi Y, HogenEsch H, Regnier FE, Hem SL. Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine19, 1747–1752 (2001).
  • Gupta RK, Rost BE. Aluminum compounds as vaccine adjuvants. In: Vaccine Adjuvants – Preparation Methods and Research Protocols. O’Hagan DT (Ed.). Humana Press Inc., NJ, USA 65–89 (2000).
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med.11(4), S63–S68 (2005).
  • O’Hagan DT, MacKichan ML, Manmohan S. Recent development in adjuvants for vaccines against infectious diseases. Biomol. Eng.18, 69–85 (2001).
  • Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant. Past experience and new directions. Pharm. Biotechnol.6, 495–524 (1995).
  • de Becker G, Moulin V, Pajak, B et al. The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Int. Immunol.12(6), 807–815 (2000).
  • Vajdy M, Srivastava I, Polo J, Donnelly J, O’Hagan DT, Singh M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol. Cell Biol.82, 617–627 (2004).
  • Lodmell DI, Ray NB, Ulrich JT, Ewalt LC. DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL). Vaccine18, 1059–1066 (2000).
  • Sasaki S, Hamajima K, Fukushima J et al. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA-monophosphoryl lipid A adjuvant vaccine. Infect. Immun.66(2), 823–826 (1998).
  • Childers NK, Miller KI, Tong G et al. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect. Immun.68(10), 5509–5516 (2000).
  • Messina JP, Gilkeson GS, Pisetsky DS. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J. Immunol.147(6), 1759–1764 (1991).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374, 546–549 (1995).
  • Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature408, 740–745 (2001).
  • Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in augmentation of Th1 responses by immunostimulatory DNA. J. Immunol.161(6), 3042–3049 (1998).
  • Davis HL, Weeratna R, Waldschmidt TJ, Tygrett I, Schorr J, Krieg AM. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatits B surface antigen. J. Immunol.160, 870–876 (1998).
  • McCluskie MJ, Weeratna R, Clements JD, Davis HL. Mucosal immunization of mice using CpG DNA and/or mutants of the heat-labile enterotoxin of Escherichia coli as adjuvants. Vaccine19(27), 3759–3768 (2001).
  • Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine17(1), 19–25 (1999).
  • Hartmann G, Weeratna R, Ballas ZK et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol.164(3), 1617–1624 (2000).
  • Kensil CR. Saponins as vaccine adjuvants. Crit. Rev. Drug Carrier Syst.13, 1–55 (1996).
  • Sasaki S, Sumino K, Hamajima K et al. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS21 saponin adjuvant via intramuscular and intranasal routes. J. Virol.72(6), 4931–4939 (1998).
  • Lachman LB, Ozpolat B, Rao XM. Cytokine-containing liposomes as vaccine adjuvants. Eur. Cytokine Netw.7(4), 693–698 (1996).
  • Cataldo DM, van Nest G. The adjuvant MF59 increases the immunogenicity and protective efficacy of subunit influenza vaccine in mice. Vaccine15(16), 1710–1715 (1997).
  • Gasparini R, Pozzi T, Montomoli E et al. Increased immunogenicity of the MF59-adjuvanted influenza vaccine compared to conventional subunit vaccine in elderly subjects. Eur. J. Epidemiol.17(2), 135–140 (2001).
  • Podda A. The adjuvanted influenza vaccines with novel adjuvant: experience with the MF59-adjuvanted vaccine. Vaccine19, 2673–2680 (2001).
  • Cunningham CK, Wara DW, Kang M et al. Safety of 2 recombinant human immunodeficiency virus type 1 (HIV-1) envelope vaccines in neonates born to HIV-1 infected women. Clin. Infect. Dis.32(5), 801–807 (2001).
  • Heineman TC, Clements-Mann MI, Poland GA et al. A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine17(22), 2769–2778 (1999).
  • Asa PB, Wilson RB, Garry RF. Antibodies to squalene in recipients of anthrax vaccine. Exp. Mol. Pathol.73(1), 19–27 (2002).
  • Kuroda Y, Nacionales DC, Akaogi J, Reeves WH, Satoh M. Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed. Pharmacother.58(5), 325–337 (2004).
  • McCormack S, Tizley A, Carmichael A et al. A Phase I trial in HIV negative healthy volunteers evaluating the effect of potent adjuvants on immunogenicity of a recombinant gp120W61D derived from dual tropic R5X4 HIV-1ACH320. Vaccine18(13), 1166–1177 (2000).
  • Alving CR. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim. Biophys. Acta.1113, 307–322 (1992).
  • Ambrosch F, Wiedermann G, Jonas S et al. Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine15(11), 1209–1213 (1997).
  • Mannino RJ, Canki M, Feketeova E et al. Targeting immune response induction with cochleate and liposome-based vaccine. Adv. Drug Deliv. Rev.32(3), 273–287 (1998).
  • Zarif L. Drug delivery by lipid cochleates. Methods Enzymol.391, 314–329 (2005).
  • Gould-Fogerite S, Kheiri MT, Zhang F et al. Targeting immune response induction with cochleate and liposome-based vaccines. Adv. Drug Deliv. Rev.32, 273–287 (1998).
  • Guy B, Pascal N, Francon A et al. Design, characterization and preclinical efficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine19, 1794–1805 (2001).
  • Chen H, Torchilin V, Langer R. Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res.13(9), 1378–1383 (1996).
  • Cox JC, Sjolander A, Barr IG. ISCOMs and other saponin based adjuvants. Adv. Drug Deliv. Rev.32(3), 247–271 (1998).
  • Rimmelzwaan GF, Baars M, van Beek R et al. Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and ISCOM vaccines. J. Gen. Virol.78, 757–765 (1997).
  • Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thipphawong J. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS). Virology259(2), 256–261 (1999).
  • Reid G. Soluble proteins incorporate into ISCOMs after covalent attachment of fatty acid. Vaccine10(9), 597–602 (1992).
  • Weiss HP, Stitz L, Becht H. Immunogenic properties of ISCOM prepared with influenza virus nucleoprotein. Arch. Virol.114(1–2), 109–120 (1990).
  • Morein B, Ekstrom J, Lovgren K. Increased immunogenicity of a non-amphipathic protein (BSA) after inclusion into ISCOMs. J. Immunol. Methods128(2), 177–181 (1990).
  • Heeg K, Kuon W, Wagner H. Vaccination of class I major histocompatibility complex (MHC)-restricted murine CD8+ cytotoxic T lymphocytes towards soluble antigens: immunostimulating-ovalbumin complexes enter the class I MHC-restricted antigen pathway and allow sensitization against the immunodominant peptide. Eur. J. Immunol.21(6), 1523–1527 (1991).
  • Gupta RK, Singh M, O’Hagan DT. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev.32(3), 225–246 (1998).
  • O’Hagan DT, Jeffery H, Davis HL. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine11(9), 965–969 (1993).
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effects of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine19, 1940–1950 (2001).
  • Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv. Drug Deliv. Rev.51, 127–141 (2001).
  • Moore A, McGuirk O, Adams S et al. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and CD4+ Th1 cells. Vaccine13(18), 1741–1749 (1995).
  • Hedley ML, Curley J, Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med.4(3), 365–368 (1998).
  • Singh M, Briones M, Ott G, O’Hagan DT. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl Acad. Sci. USA97(2), 811–826 (2000).
  • Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control. Release67, 347–356 (2000).
  • O’Hagan DT, Ugozzoli M, Barackman J et al. Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1. Vaccine18(17), 1793–1801 (2000).
  • Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature298(5872), 347–350 (1982).
  • Schirmbeck R, Bohm W, Ando K, Chisari FV, Reiman J. Nucleic acid vaccination primes hepatitis B virus surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. J. Virol.69(10), 5929–5934 (1995).
  • Adams SE, Mellor J, Gull K et al. The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell49(1), 111–119 (1987).
  • Gilbert SC, Plebanski M, Harris SJ et al. A protein particle vaccine containing multiple malaria epitopes. Nat. Biotechnol.15(12), 1280–1284 (1997).
  • Klavinskis LS, Bergmeier LA, Gao L et al. Mucosal or targeted lymph node immunization of macaques with a particulate SIVp27 protein elicits virus-specific CTL in the genito-rectal mucosa and draining lymph nodes. J. Immunol.157(6), 2521–2527 (1996).
  • Martin SJ, Vyakarnam A, Cheingsong-Popov R et al. Immunization of human HIV-seronegative volunteers with recombinant p17/p24: Ty virus-like particles elicit HIV-1 p24-specific cellular and humoral immune responses. AIDS7(10), 1315–1323 (1993).
  • Levine MM, Noriega F. A review of the current status of enteric vaccines. PNG Med. J.38(4), 325–331 (1995).
  • Mollenkopf H, Dietrich G, Kaufmann SH. Intracellular bacteria as targets and carriers for vaccination. Biol. Chem.382(4), 521–532 (2001).
  • Scheppler L, Vogel M, Zuercher AW et al. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine20, 2913–2920 (2002).
  • Haneberg B, Herland Berstad AK, Holst J. Bacteria-derived particles as adjuvants for non-replicating nasal vaccines. Adv. Drug Deliv. Rev.51, 143–147 (2001).
  • Jechlinger W, Haidinger W, Paukner S et al. Bacterial ghosts as carrier and targeting systems for antigen delivery. In: Vaccine Delivery Strategies. Dietrich G, Goebel W (Eds). Horizon Scientific Press, Norwich, UK 163–184 (2002).
  • Cripps A, Gleeson M. Ontogeny of mucosal immunity and aging. In: Mucosal Immunology. Ogra PL, Mestecky J, Lamm ME et al. (Eds). Academic Press, CA, USA 253–266 (1999).
  • Foxwell AR, Kyd J, Cripps A. Mucosal immunization against respiratory bacterial pathogens. Expert Rev. Vaccines2, 551–560 (2003).
  • O’Hagan DT. Microparticles and polymers for the mucosal delivery of vaccines. Adv. Drug Deliv. Rev.34, 305–320 (1998).
  • Rappuoli R, Pizza M, Douce G, Dougan G. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol. Today20, 493–500 (1999).
  • Marchetti M, Rossi M, Giannelli V et al. Protection against Helicobacter pylori infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant. Vaccine16(1), 33–37 (1998).
  • Douce G, Giannelli V, Pizza M et al. Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infect. Immun.67(9), 4400–4406 (1999).
  • Mowat AMI, Donachie AM, Jagewall S et al. CTA1-DD-immune stimulating complexes: a novel, rationally designed combined mucosal vaccine adjuvant effective with nanogram doses of antigen. J. Immunol.167, 3398–3405 (2001).
  • Nawar HF, Arce S, Russell MW, Connell TD. Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities. Infect. Immun.73(3), 1330–1342 (2005).
  • Eldridge JH, Staas JK, Meulbroek JA, McGhee JR, Tice TR, Gilley RM. Biodegradable microspheres as a vaccine delivery system. Mol. Immunol.28(3), 287–294 (1991).
  • Zhou F, Neutra MR. Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci. Rep.22(2), 355–369 (2002).
  • O’Hagan DT. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat.189, 477–482 (1996).
  • Pappo J, Ermak TH, Steger HJ. Monoclonal antibody directed targeting of fluorescent microspheres to Peyer’s patches M cells. Immunology73, 277–280 (1991).
  • Challacombe SJ, Rahman D, O’Hagan DT. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine15(2), 169–175 (1997).
  • Whittum-Hudson JA, An LL, Saltzman WM, Prendergast RA, MacDonald AB. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat. Med.2(10), 1116–1121 (1996).
  • Allaoui-Attarki K, Pecquet S, Fattal E et al. Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect. Immun.65(3), 853–857 (1997).
  • Jones DH, Corris S, McDonald S, Clegg JC, Farrar GH. Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine15(8), 814–817 (1997).
  • Ugozzoli M, O’Hagan DT, Ott G. Intranasal immunization of mice with herpes simplex virus type 2 recombinant gD2: the effect of adjuvants on mucosal and serum antibody responses. Immunology93(4), 563–571 (1998).
  • Jalava K, Eko FO, Riedmann E, Lubitz W. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev. Vaccines2(1), 45–51 (2003).
  • Azimpour Tabrizi C, Walcher P, Mayr UB et al. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol.15, 530–537 (2004).
  • Witte A, Wanner G, Sulzner M, Lubitz W. Dynamics of φX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol.157(4), 381–388 (1992).
  • Witte A, Wanner G, Bläsi U, Halfmann G, Szostak M, Lubitz W. Endogenous transmembrane tunnel formation mediated by φX174 lysis protein E. J. Bacteriol.172(7), 4109–4114 (1990).
  • Witte A, Bläsi U, Halfmann G, Szostak M, Wanner G, Lubitz W. φX174 protein E-mediated lysis of Escherichia coli. Biochimie72(2–3), 191–200 (1990).
  • Szostak MP, Hensel A, Eko FO et al. Bacterial ghosts: non-living candidate vaccines. J. Biotechnol.44(1–3), 161–170 (1996).
  • Lubitz W, Witte A, Eko A et al. Extended recombinant bacterial ghost system. J. Biotechnol.73(2–3), 261–273 (1999).
  • Haidinger W, Szostak M, Jechlinger W, Lubitz W. Online monitoring of Escherichia coli ghost production. Appl. Environ. Microbiol.69(1), 468–474 (2003).
  • Haidinger W, Mayr UB, Szostak MP, Resch S, Lubitz W. Escherichia coli ghost production by expression of lysis gene E and staphylococcal nuclease. Appl. Environ. Microbiol.69(10), 6106–6113 (2003).
  • Mayr UB, Walcher P, Azimpour Tabrizi C, Riedmann E, Haller C, Lubitz W. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Delivery Rev.57, 1381–1391 (2005).
  • Szostak M, Auer T, Lubitz W. Immune response against recombinant bacterial ghosts carrying HIV-1 reverse transcriptase. In: Vaccines 93. Modern Approaches to New Vaccines Including Prevention of AIDS. Brown F, Chanock RM, Giensburg H et al. (Eds). Cold Spring Harbor Laboratory Press, NY, USA 419–425 (1993).
  • Paukner S, Stiedl T, Kudela P, Bizik J, Al Laham F, Lubitz W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Expert Opin. Drug Deliv.3(1), 11–22 (2006).
  • Kudela P, Paukner S, Mayr B. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J. Immunother.28(2), 136–143 (2005).
  • Paukner S, Kudela P, Kohl G, Schlapp T, Friedrichs S, Lubitz W. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol. Ther.11(2), 215–223 (2005).
  • Ebensen T, Paukner S, Link C et al. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol.172, 6858–6865 (2004).
  • Mayrhofer P, Azimpour Tabrizi C, Walcher P, Haidinger W, Jechlinger W, Lubitz W. Immobilization of plasmid DNA in bacterial ghosts. J. Control. Release102, 725–735 (2005).
  • Jechlinger W, Azimpour Tabrizi C, Lubitz W, Mayrhofer P. Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J. Mol. Microbiol. Biotechnol.8(4), 222–231 (2004).
  • Paukner S, Kohl G, Jalava K, Lubitz W. Sealed bacterial ghosts – novel targeting vehicles for advanced drug delivery of water-soluble substances. J. Drug Targeting11(3), 151–161 (2003).
  • Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J. Control. Release94, 63–74 (2004).
  • Szostak MP, Lubitz W. Recombinant bacterial ghosts as multivaccine vehicles. In: Vaccines 91. Modern Approaches to New Vaccines Including Prevention of AIDS. Chanock RM, Ginsberg H, Brown F et al. (Eds). Cold Spring Harbor Laboratory Press, NY, USA 409–414 (1991).
  • Eko FO, Hensel A, Bunka S, Lubitz W. Production of Vibrio cholerae ghosts (VCG) by expression of a cloned phage lysis gene: potential for vaccine development. Vaccine12(13), 1231–1237 (1994).
  • Huter V, Szostak MP, Gampfer J et al. Bacterial ghosts as drug carrier and targeting vehicles. J. Control. Release61(1–2), 51–63 (1999).
  • Lubitz W. Bacterial ghosts as carrier and targeting systems. Expert Opin. Biol. Ther.1(5), 765–771 (2001).
  • Shi H, Wen Su W. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb. Technol.28(1), 25–34 (2001).
  • Hobom G, Arnold N, Ruppert A. OmpA fusion proteins for presentation of foreign antigens on the bacterial outer membrane. Dev. Biol. Stand.84, 255–262 (1995).
  • Ruppert A, Arnold N, Hobom G. Omp-A-FMDV VP1 fusion proteins: production, cell surface exposure and immune responses to the major antigenic domain of foot-and-mouth disease virus. Vaccine12(6), 492–498 (1994).
  • Haddad D, Liljeqvist S, Kumar S et al. Surface display compared with periplasmic expression of a malarial antigen in Salmonella typhimurium and its implications for immunogenicity. FEMS Immun. Med. Microbiol.12, 175–186 (1995).
  • Jechlinger W, Haller C, Resch S, Hofmann A, Szostak M, Lubitz W. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine23, 3609–3617 (2005).
  • Kuen B, Sleytr UB, Lubitz W. Sequence analysis of the sbsA gene encoding the 130-kDa surface-layer protein of Bacillus stearothermophilus strain PV72. Gene145(1), 115–120 (1994).
  • Kuen B, Koch A, Asenbauer E, Sara M, Lubitz W. Molecular characterization of the Bacillus stearothermophilus PV72 S-layer gene sbsB induced by oxidative stress. J. Bacteriol.179(5), 1664–1670 (1997).
  • Kuen B, Sara M, Lubitz W. Heterologous expression and self-assembly of the S-layer protein SbsA of Bacillus stearothermophilus in Escherichia coli. Mol. Microbiol.19(3), 495–503 (1995).
  • Truppe M, Howorka S, Schroll G et al. Biotechnological applications of recombinant S-layer proteins rSbsA and rSbsB from Bacillus stearothermophilus PV72. FEMS Microbiol. Rev.20, 88–91 (1997).
  • Jalava K, Hensel A, Szostak M, Resch S, Lubitz W. Bacterial ghosts as vaccine candidates for veterinary applications. J. Control. Release85, 17–25 (2002).
  • Walcher P, Mayr UB, Azimpour Tabrizi C et al. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors. Expert Rev. Vaccines3(6), 681–691 (2004).
  • Eko FO, Hensel A, Bunka S, Lubitz W. Immunogenicity of Vibrio cholerae ghosts following intraperitoneal immunization of mice. Vaccine12(14), 1330–1334 (1994).
  • Eko FO, Schukovskaya T, Lotzmanova EY et al. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine21, 3663–3674 (2003).
  • Eko FO, Mayr UB, Attridge SR, Lubitz W. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. J. Biotechnol.83(1–2), 115–123 (2000).
  • Eko FO, Lubitz W, Mcmillan L et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine21, 1694–1703 (2003).
  • Eko FO, He Q, Brown T et al. A novel recombinant multisubunit vaccine against chlamydia. J. Immunol.173, 3375–3382 (2004).
  • Mayr UB, Haller C, Haidinger W et al. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun.73(8), 4810–4817 (2005).
  • Katinger A, Lubitz W, Szostak MP et al. Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. J. Biotechnol.73(2–3), 251–260 (1999).
  • Hensel A, Huter V, Katinger A et al. Intramuscular immunization with genetically inactivated (ghosts) Actinobacillus pleuropneumoniae serotype 9 protects pigs against homologous aerosol challenge and prevents carrier state. Vaccine18(26), 2945–2955 (2000).
  • Huter V, Hensel A, Brand E, Lubitz W. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts: characterization of a genetically inactivated vaccine. J. Biotechnol.83(1–2), 161–172 (2000).
  • Felnerova D, Kudela P, Bizik J et al. T-cell specific immune response induced by bacterial ghosts. Med. Sci. Monitor10(10), BR362–BR370 (2004).
  • Panthel K, Jechlinger W, Matis A et al. Generation of Helicobacter pylori ghosts by φX protein E-mediated inactivation and their evaluation as vaccine candidates. Infect. Immun.71(1), 109–116 (2003).
  • Riedmann E, Kyd J, Smith AM et al. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts – a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immun. Med. Microbiol.37(2–3), 185–192 (2003).
  • Kyd JM, Cripps AW. Potential of a novel protein, OMP26, from nontypeable Haemophilus influenzae to enhance pulmonary clearance in a rat model. Infect. Immun.66(5), 2272–2278 (1998).
  • Haslberger AG, Kohl G, Felnerova D, Mayr UB, Fürst-Ladani S, Lubitz W. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J. Biotechnol.83(1–2), 57–66 (2000).
  • Mader HJ, Szostak MP, Hensel A, Lubitz W, Haslberger AG. Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine15(2), 195–202 (1997).
  • Hensel A, van Leengoed LA, Szostak M et al. Induction of protective immunity by aerosol or oral application of candidate vaccines in a dose-controlled pig aerosol infection model. J. Biotechnol.44(1–3), 171–181 (1996).

Website

  • Duckworth J, Mate K, Scobie S et al. Evaluating zona pellucida antigens and delivery systems for possum fertility control in New Zealand: progress and future directions. In: Biological Managment of Possums. National Science Strategy Committee for Possum and Bovine TB Control (2001). Ministry of Agriculture and Forestry, Wellington, New Zealand www.maf.govt.nz/mafnet/publications/ research/biological-management-of-possums

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.