98
Views
31
CrossRef citations to date
0
Altmetric
Review

Clinical utilization of chemokines to combat cancer: the double-edged sword

&
Pages 267-283 | Published online: 09 Jan 2014

References

  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001).
  • Balkwill F. Cancer and the chemokine network. Nat. Rev. Cancer4, 540–550 (2004).
  • Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat. Immunol.2, 123–128 (2001).
  • Varney ML, Johansson SL, Singh RK. Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma, role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Res.15, 417–425 (2005).
  • Strieter RM, Polverini PJ, Kunkel SL et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem.270, 27348–27357 (1995).
  • Nukiwa M, Andarini S, Zaini J et al. Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors. Eur. J. Immunol.36, 1019–1027 (2006).
  • Mendez R, Ruiz-Cabello F, Rodriguez T et al. Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol. Immunother.56, 88–94 (2007).
  • Kumamoto T, Huang EK, Paek HJ et al. Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine. Nat. Biotechnol.20, 64–69 (2002).
  • Fushimi T, Kojima A, Moore MA, Crystal RG. Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J. Clin. Invest.105, 1383–1393 (2000).
  • Bacon K, Baggiolini M, Broxmeyer H et al. Chemokine/chemokine receptor nomenclature. J. Interferon Cytokine Res.22, 1067–1068 (2002).
  • Oppenheim JJ, Yang D, Biragyn A, Howard OM, Plotz P. Chemokine receptors on dendritic cells promote autoimmune reactions. Arthritis Res.4(Suppl. 3), S183–S188 (2002).
  • Ploix C, Lo D, Carson MJ. A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J. Immunol.167, 6724–6730 (2001).
  • Scrivener S, Goddard RV, Kaminski ER, Prentice AG. Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leuk. Lymphoma44, 383–389 (2003).
  • Ishida T, Utsunomiya A, Iida S et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma, its close association with skin involvement and unfavorable outcome. Clin. Cancer Res.9, 3625–3634 (2003).
  • Ishida T, Iida S, Akatsuka Y et al. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-cell leukemia/lymphoma. Clin. Cancer Res.10, 7529–7539 (2004).
  • Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor, functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272, 872–877 (1996).
  • He J, Chen Y, Farzan M et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature385, 645–649 (1997).
  • Coscia M, Biragyn A. Cancer immunotherapy with chemoattractant peptides. Semin. Cancer Biol.14, 209–218 (2004).
  • Biragyn A, Tani K, Grimm MC, Weeks SD, Kwak LW. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat. Biotech.17, 253–258 (1999).
  • Biragyn A, Surenhu M, Yang D et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol.167, 6644–6653 (2001).
  • Burger JA, Kipps TJ. CXCR4, a key receptor in the crosstalk between tumor cells and their microenvironment. Blood107, 1761–1767 (2006).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10, 942–949 (2004).
  • Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol. Immunol.42, 799–809 (2005).
  • Lau EK, Paavola CD, Johnson Z, Gaudry et al. Identification of the glycosaminoglycan binding site of the chemokine CC, MCP-1, implications for structure and function in vivo. J. Biol. Chem.279, 22294–22305 (2004).
  • Stringer SE, Gallagher JT. Specific binding of the chemokine platelet factor 4 to heparan sulfate. J. Biol. Chem.272, 20508–20514 (1997).
  • Stringer SE, Forster MJ, Mulloy B, Bishop CR, Graham GJ, Gallagher JT. Characterization of the binding site on heparan sulfate for macrophage inflammatory protein 1α. Blood100, 1543–1550 (2002).
  • Spillmann D, Witt D, Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J. Biol. Chem.273, 15487–15493 (1998).
  • Lortat-Jacob H, Grosdidier A, Imberty A. Structural diversity of heparan sulfate binding domains in chemokines. Proc. Natl Acad. Sci. USA99, 1229–1234 (2002).
  • Patterson AM, Gardner L, Shaw J, G et al. Induction of a CXCL8 binding site on endothelial syndecan-3 in rheumatoid synovium. Arthritis Rheum.52, 2331–2342 (2005).
  • Ali S, Palmer AC, Banerjee B, Fritchley SJ, Kirby JA. Examination of the function of RANTES, MIP-1α, MIP-1β following interaction with heparin-like glycosaminoglycans. J. Biol. Chem.275, 11721–11727 (2000).
  • Kuschert GS, Coulin F, Power CA et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry38, 12959–12968 (1999).
  • Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc. Natl Acad. Sci. USA90, 7158–7162 (1993).
  • Luster AD, Greenberg SM, Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J. Exp. Med.182, 219–231 (1995).
  • Proudfoot AE, Handel TM, Johnson Z et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl Acad. Sci. USA100, 1885–1890 (2003).
  • Johnson Z, Kosco-Vilbois MH, Herren S et al. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J. Immunol.173, 5776–5785 (2004).
  • Sadir R, Imberty A, Baleux F, Lortat-Jacob H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J. Biol. Chem.279, 43854–43860 (2004).
  • Murooka TT, Wong MM, Rahbar R, Majchrzak-Kita B, Proudfoot AE, Fish EN. CCL5-CCR5-mediated apoptosis in T cells: Requirement for glycosaminoglycan binding and CCL5 aggregation. J. Biol. Chem.281, 25184–25194 (2006).
  • Gilat D, Hershkoviz R, Mekori YA, Vlodavsky I, Lider O. Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1β. J. Immunol.153, 4899–4906 (1994).
  • Dowsland MH, Harvey JR, Lennard TW, Kirby JA, Ali S. Chemokines and breast cancer, a gateway to revolutionary targeted cancer treatments? Curr. Med. Chem.10, 579–592 (2003).
  • Shurin MR, Shurin GV, Lokshin A et al. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells, friends or enemies? Cancer Metastasis Rev.25, 333–356 (2006).
  • Folkman J. Angiogenesis. Annu. Rev. Med.57, 1–18 (2006).
  • Zilberberg L, Shinkaruk S, Lequin O et al. Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor. J. Biol. Chem.278(37), 35564–35573 (2003).
  • Glade-Bender J, Kandel JJ, Yamashiro DJ. VEGF blocking therapy in the treatment of cancer. Expert. Opin Biol. Ther.3, 263–276 (2003).
  • Homey B, Muller A, Zlotnik A. Chemokines, agents for the immunotherapy of cancer? Nature Rev. Immunol.2, 175–184 (2002).
  • Bernardini G, Spinetti G, Ribatti D et al. I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood96, 4039–4045 (2000).
  • Salcedo R, Young HA, Ponce ML et al. Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J. Immunol.166, 7571–7578 (2001).
  • Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE. Fractalkine, a novel angiogenic chemokine in rheumatoid arthritis. Am. J. Pathol.159, 1521–1530 (2001).
  • Wierda WG, Johnson MM, Do KA et al. Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia. Br. J. Haematol.120, 452–456 (2003).
  • White ES, Flaherty KR, Carskadon S et al. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer, role in angiogenesis and prognosis. Clin. Cancer Res.9, 853–860 (2003).
  • Belperio JA, Keane MP, Arenberg DA et al. CXC chemokines in angiogenesis. J. Leukoc. Biol.68, 1–8 (2000).
  • Bosco MC, Puppo M, Santangelo C et al. Hypoxia modifies the transcriptome of primary human monocytes, modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J. Immunol.177, 1941–1955 (2006).
  • Bosco MC, Reffo G, Puppo M, Varesio L. Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cell. Immunol.228, 1–7 (2004).
  • Schioppa T, Uranchimeg B, Saccani A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med.198, 1391–1402 (2003).
  • Ohta M, Kitadai Y, Tanaka S et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int. J. Oncol.22, 773–778 (2003).
  • Goede V, Brogelli L, Ziche M, Augustin HG. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int. J. Cancer.82, 765–770 (1999).
  • Ueno T, Toi M, Saji H et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res.6, 3282–3289 (2000).
  • Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J. Clin. Invest97, 2792–2802 (1996).
  • Arenberg DA, Keane MP, DiGiovine B et al. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J. Clin. Invest102, 465–472 (1998).
  • Wang B, Hendricks DT, Wamunyokoli F, Parker MI. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res.66, 3071–3077 (2006).
  • Luan J, R Shattuck-Brandt, Haghnegahdar H et al. Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J. Leukoc. Biol.62, 588–597 (1997).
  • Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J. Clin. Oncol.19, 577–583 (2001).
  • Huang S, Mills L, Mian B et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am. J. Pathol.161, 125–134 (2002).
  • Arenberg DA, Kunkel SL, Polverini PJ et al. Interferon-g-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med.184, 981–992 (1996).
  • Arenberg DA, Zlotnick A, Strom SR, Burdick MD, Strieter RM. The murine chemokine CC, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol. Immunother.49, 587–592 (2001).
  • Addison CL, Arenberg DA, Morris SB et al. The chemokine XC, monokine induced by interferon-γ, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum. Gene Ther.11, 247–261 (2000).
  • Mullins IM, Slingluff CL, Lee JK et al. CXC chemokine receptor 3 expression by activated CD8+ T cells is associated with survival in melanoma patients with stage III disease. Cancer Res.64, 7697–7701 (2004).
  • Lanzavecchia A, Sallusto F. The instructive role of dendritic cells on T cell responses, lineages, plasticity and kinetics. Curr. Opin. Immunol.13, 291–298 (2001).
  • Sebastiani S, Allavena P, Albanesi C et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J. Immunol.166, 996–1002 (2001).
  • Iellem A, Mariani M, Lang R et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med.194, 847–853 (2001).
  • Stine JT, Wood C, Hill M et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood95, 1151–1157 (2000).
  • Bendall L. Chemokines and their receptors in disease. Histol. Histopathol.20, 907–926 (2005).
  • Sallusto F, Palermo B, Lenig D et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol.29, 1617–1625 (1999).
  • Dieu MC, Vanbervliet B, Vicari A et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med.188, 373–386 (1998).
  • Campbell MJ, Esserman L, Byars NE, Allison AC, Levy R. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity. J. Immunol.145, 1029–1036 (1990).
  • Bardi G, Lipp M, Baggiolini M, Loetscher P. The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur. J. Immunol.31, 3291–3297 (2001).
  • Mariani M, Lang R, Binda E, Panina-Bordignon P, D’Ambrosio D. Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells. Eur. J. Immunol.34, 231–240 (2004).
  • Longo-Imedio MI, Longo N, Trevino I, Lazaro P, Sanchez-Mateos P. Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int. J. Cancer117, 861–865 (2005).
  • Ishida T, Inagaki H, Utsunomiya A et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin. Cancer Res.10, 5494–5500 (2004).
  • Jones D, Benjamin RJ, Shahsafaei A, Dorfman DM. The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. Blood95, 627–632 (2000).
  • Trentin L, Agostini C, Facco M et al. The chemokine receptor CXCR3 is expressed on malignant B cells and mediates chemotaxis. J. Clin. Invest.104, 115–121 (1999).
  • Rubie C, Frick VO, Wagner M et al. Enhanced expression and clinical significance of CC-chemokine MIP-3α in hepatocellular carcinoma. Scand. J. Immunol.63, 468–477 (2006).
  • Kimsey TF, Campbell AS, Albo D, Wilson M, Wang TN. Co-localization of macrophage inflammatory protein-3α (Mip-3α) and its receptor, CCR6, promotes pancreatic cancer cell invasion. Cancer J.10, 374–380 (2004).
  • Wang J, Xi L, Hunt JL, Gooding W et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res.64, 1861–1866 (2004).
  • Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A. CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res.64, 4693–4698 (2004).
  • Cabioglu N, Yazici MS, Arun B et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res.11, 5686–5693 (2005).
  • Gunther K, Leier J, Henning G et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int. J. Cancer.116, 726–733 (2005).
  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature425, 307–311 (2003).
  • Cabioglu N, Summy J, Miller C et al. CXCL-12/stromal cell-derived factor-1α transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res.65, 6493–6497 (2005).
  • Li YM, Pan Y, Wei Y et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell6, 459–469 (2004).
  • Kodama J, Hasengaowa, Kusumoto T et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann. Oncol.18, 70–76 (2006).
  • Kim J, Takeuchi H, Lam ST et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J. Clin. Oncol.23, 2744–2753 (2005).
  • Ottaiano A, Franco R, Aiello TA et al. Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II–III colorectal cancer patients. Clin. Cancer Res.12, 2795–2803 (2006).
  • Proudfoot EA. Chemokine receptors, multifaceted therapeutic targets. Nat. Rev. Immunol.2, 106–115 (2002).
  • Catani MV, Corasaniti MT, Ranalli M et al. The Tat antagonist neomycin B hexa-arginine conjugate inhibits gp-120-induced death of human neuroblastoma cells. J. Neurochem.84, 1237–1245 (2003).
  • Takenaga M, Tamamura H, Hiramatsu K et al. A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasis of murine melanoma. Biochem. Biophys. Res. Commun.320, 226–232 (2004).
  • Tamamura H, Fujii N. The therapeutic potential of CXCR4 antagonists in the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Expert Opin. Ther. Targets9, 1267–1282 (2005).
  • Miwa S, Mizokami A, Keller ET, Taichman R, Zhang J, Namiki M. The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Cancer Res.65, 8818–8825 (2005).
  • Bertolini F, C Dell’Agnola, Mancuso P et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin lymphoma. Cancer Res.62, 3106–3112 (2002).
  • Maloney DG, Grillo-Lopez AJ, White CA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood90, 2188–2195 (1997).
  • Niwa R, Shoji-Hosaka E, Sakurada M et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res.64, 2127–2133 (2004).
  • Boot JH, Geerts ME, Aarden LA. Functional polymorphisms of Fc receptors in human monocyte-mediated cytotoxicity towards erythrocytes induced by murine isotype switch variants. J. Immunol.142, 1217–1223 (1989).
  • Kim DH, Jung HD, Kim JG et al.FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood108, 2720–2725 (2006).
  • Crazzolara R, Bernhard D. CXCR4 chemokine receptors, histone deacetylase inhibitors and acute lymphoblastic leukemia. Leuk. Lymphoma46, 1545–1551 (2005).
  • Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood104, 619–625 (2004).
  • Wang J, Zhang X, Thomas SM et al. Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR. Oncogene24, 5897–5904 (2005).
  • Cronshaw DG, Owen C, Brown Z, Ward SG. Activation of phosphoinositide 3-kinases by the CCR4 ligand macrophage-derived chemokine is a dispensable signal for T lymphocyte chemotaxis. J. Immunol.172, 7761–7770 (2004).
  • Muller A, Sonkoly E, Eulert C et al. Chemokine receptors in head and neck cancer, association with metastatic spread and regulation during chemotherapy. Int. J. Cancer.118, 2147–2157 (2006).
  • Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J. Biol. Chem.277, 49481–49487 (2002).
  • Okamatsu Y, Kim D, Battaglino R, Sasaki H, Spate U, Stashenko P. MIP-1γ promotes receptor-activator-of-NF-κB-ligand-induced osteoclast formation and survival. J. Immunol.173, 2084–2090 (2004).
  • Salcedo R, Resau JH, Halverson D et al. Differential expression and responsiveness of chemokine receptors (CXCR1–3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J.14, 2055–2064 (2000).
  • Burns JM, Summers BC, Wang Y et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med.203, 2201–2213 (2006).
  • Yoshie O, Fujisawa R, Nakayama T et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood99, 1505–1511 (2002).
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity21, 137–148 (2004).
  • Liu YQ, Poon RT, Hughes J, Li QY, Yu WC, Fan ST. Desensitization of T lymphocyte function by CXCR3 ligands in human hepatocellular carcinoma. World J. Gastroenterol.11, 164–170 (2005).
  • Kohrgruber N, Groger M, Meraner P et al. Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands. J. Immunol.173, 6592–6602 (2004).
  • Ogilvie P, Paoletti S, Clark-Lewis I, Uguccioni M. Eotaxin-3 is a natural antagonist for CCR2 and exerts a repulsive effect on human monocytes. Blood102, 789–794 (2003).
  • Vianello F, Papeta N, Chen T et al. Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J. Immunol.176, 2902–2914 (2006).
  • Remmel E, Terracciano L, Noppen C et al. Modulation of dendritic cell phenotype and mobility by tumor cells in vitro. Hum. Immunol.62, 39–49 (2001).
  • Frederick MJ, Henderson Y, Xu X et al.In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am. J. Pathol.156, 1937–1950 (2000).
  • Shurin GV, Ferris RL, Tourkova IL et al. Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J. Immunol.174, 5490–5498 (2005).
  • Shellenberger TD, Wang M, Gujrati M et al. BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res.64, 8262–8270 (2004).
  • Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol.158, 4129–4136 (1997).
  • Shearer GM, Clerici M. Protective immunity against HIV infection, has nature done the experiment for us? Immunol. Today17, 21–24 (1996).
  • Rowland-Jones S, Sutton J, Ariyoshi K et al. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat. Med.1, 59–64 (1995).
  • Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity10, 281–287 (1999).
  • Melief CJ, Kast WM. T-cell immunotherapy of tumors by adoptive transfer of cytotoxic T lymphocytes and by vaccination with minimal essential epitopes. Immunol. Rev.145, 167–177 (1995).
  • Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature404, 407–411 (2000).
  • Mendel IE, Shevach M. The IL-10-producing competence of Th2 cells generated in vitro is IL-4 dependent. Eur. J. Immunol.32, 3216–3224 (2002).
  • Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001).
  • Sakaguchi S. Regulatory T cells, key controllers of immunologic self-tolerance. Cell101, 455–458 (2000).
  • Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J. Immunol.172, 2778–2784 (2004).
  • Cavani A, Nasorri F, Prezzi C, Sebastiani S, Albanesi C, Girolomoni G. Human CD4+ T lymphocytes with remarkable regulatory functions on dendritic cells and nickel-specific Th1 immune responses. J. Invest. Dermatol.114, 295–302 (2000).
  • Ghiringhelli F, Larmonier N, Schmitt E et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol.34, 336–344 (2004).
  • Alyanakian MA, You S, Damotte D et al. Diversity of regulatory CD4+T cells controlling distinct organ-specific autoimmune diseases. Proc. Natl Acad. Sci. USA100, 15806–15811 (2003).
  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199, 971–979 (2004).
  • Wang HY, Lee DA, Peng G et al. Tumor-specific human CD4+ regulatory T cells and their ligands, implications for immunotherapy. Immunity20, 107–118 (2004).
  • Woo EY, Yeh H, Chu CS et al. Cutting edge regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol.168, 4272–4276 (2002).
  • Beyer M, Kochanek M, Darabi K et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood106, 2018–2025 (2005).
  • Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naïve CD4 Tregs. J. Clin. Invest.115, 1953–1962 (2005).
  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999).
  • Zou L, Barnett B, Safah H et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res.64, 8451–8455 (2004).
  • Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood105, 2877–2886 (2005).
  • Colantonio L, Iellem A, Sinigaglia F, D’Ambrosio D. Skin-homing CLA+ T cells and regulatory CD25+ T cells represent major subsets of human peripheral blood memory T cells migrating in response to CCL1/I-309. Eur. J. Immunol.32, 3506–3514 (2002).
  • Hisaeda H, Maekawa Y, Iwakawa D et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat. Med.10, 29–30 (2004).
  • Aandahl EM, Michaelsson J, Moretto WJ, Hecht FM, Nixon DF. Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J. Virol.78, 2454–2459 (2004).
  • Ghia P, Strola G, Granziero L et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur. J. Immunol.32, 1403–1413 (2002).
  • Luster AD, Leder P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med.178, 1057–1065 (1993).
  • Wolf M, Clark-Lewis I, Buri C, Langen H, Lis M, Mazzucchelli L. Cathepsin D specifically cleaves the chemokines macrophage inflammatory protein-1 α, macrophage inflammatory protein-1 β, SLC that are expressed in human breast cancer. Am. J. Pathol.162, 1183–1190 (2003).
  • Narducci MG, Scala E, Bresin A et al. Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood107, 1108–1115 (2006).
  • Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood96, 1674–1680 (2000).
  • Shioda T, Kato H, Ohnishi Y et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1α (SDF-1α) and SDF-1β are abolished by CD26/dipeptidyl peptidase-IV-mediated cleavage. Proc. Natl Acad. Sci. USA95, 6331–6336 (1998).
  • Salcedo R, Martins-Green M, Gertz B, Oppenheim JJ, Murphy WJ. Combined administration of antibodies to human interleukin 8 and epidermal growth factor receptor results in increased antimetastatic effects on human breast carcinoma xenografts. Clin. Cancer Res.8, 2655–2665 (2002).
  • Choi SJ, Cruz JC, Craig F et al. Macrophage inflammatory protein 1α is a potential osteoclast stimulatory factor in multiple myeloma. Blood96, 671–675 (2000).
  • Abe M, Hiura K, Wilde J et al. Role for macrophage inflammatory protein (MIP)-1α and MIP-1β in the development of osteolytic lesions in multiple myeloma. Blood100, 2195–2202 (2002).
  • Choi SJ, Oba Y, Gazitt Y et al. Antisense inhibition of macrophage inflammatory protein 1-α blocks bone destruction in a model of myeloma bone disease. J. Clin. Invest.108, 1833–1841 (2001).
  • Walser TC, Rifat S, Ma X et al. Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res.66, 7701–7707 (2006).
  • Schiller JT, Lowy DR. Prospects for cervical cancer prevention by human papillomavirus vaccination. Cancer Res.66, 10229–10232 (2006).
  • Fushimi T, O’Connor TP, Crystal RG. Adenoviral gene transfer of stromal cell-derived factor-1 to murine tumors induces the accumulation of dendritic cells and suppresses tumor growth. Cancer Res.66, 3513–3522 (2006).
  • Guo J, Wang B, Zhang M et al. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity Gene Ther.9, 793–803 (2002).
  • Okada N, Gao JQ, Sasaki A et al. Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host’s immune system, implications for chemokine-based cancer immunotherapy. Biochem. Biophys. Res. Commun.317, 68–76 (2004).
  • Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW. DNA vaccines encoding HIV-1 gp120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood100, 1153–1159 (2002).
  • Trifilo MJ, Lane TE. The CC chemokine ligand 3 regulates CD11c+ CD11b+ CD8α dendritic cell maturation and activation following viral infection of the central nervous system, implications for a role in T cell activation. Virology327, 8–15 (2004).
  • Nakashima E, Oya A, Kubota Y et al. A candidate for cancer gene therapy, MIP-1α gene transfer to an adenocarcinoma cell line reduced tumorigenicity and induced protective immunity in immunocompetent mice. Pharm. Res.13, 1896–1901 (1996).
  • Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol.2, 1126–1132 (2001).
  • Ng-Cashin J, Kuhns JJ, Burkett SE et al. Host absence of CCR5 potentiates dendritic cell vaccination. J. Immunol.170, 4201–4208 (2003).
  • Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev.25, 315–322 (2006).
  • Penna G, Vulcano M, Roncari A, Facchetti F, Sozzani S, Adorini L. Cutting edge, differential chemokine production by myeloid and plasmacytoid dendritic cells. J. Immunol.169, 6673–6676 (2002).
  • George TC, Bilsborough J, Viney JL, Norment AM. High antigen dose and activated dendritic cells enable Th cells to escape regulatory T cell-mediated suppression in vitro. Eur. J. Immunol.33, 502–511 (2003).
  • Matzinger P. An innate sense of danger. Semin. Immunol10(5), 399–415 (2002).
  • Medzhitov R, Janeway C Jr. Innate immunity. N. Engl. J. Med.343(5), 338–344 (2000).
  • Rissoan MC, Soumelis V, Kadowaki N et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science283, 1183–1186 (1999).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392, 245–252 (1998).
  • Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J. Exp. Med.198, 111–122 (2003).
  • Lizee G, Basha G, Tiong J et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol4, 1065–1073 (2003).
  • Heath WR, Belz GT, Behrens GM et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev.199, 9–26 (2004).
  • Zaliauskiene L, Kang S, Sparks K et al. Enhancement of MHC class II-restricted responses by receptor-mediated uptake of peptide antigens. J. Immunol.169, 2337–2345 (2002).
  • Mahnke K, Guo M, Lee S et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol.151, 673–684 (2000).
  • Yang D, Chertov O, Bykovskaia SN et al. β-defensins, linking innate and adaptive immunity through dendritic and T cell CCR6. Science286, 525–528 (1999).
  • Schiavo R, Baatar D, Olkhanud P et al. Chemokine receptor targeting efficiently directs antigens to MHC class I pathways and elicits antigen-specific CD8+ T-cell responses. Blood107, 4597–4605 (2006).
  • Biragyn A, Ruffini PA, Coscia M et al. Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood104, 1961–1969 (2004).
  • Caux C, Massacrier C, Vanbervliet B et al. Activation of human dendritic cells through CD40 crosslinking. J. Exp. Med.180, 1263–1272 (1994).
  • Biragyn A, Ruffini PA, Leifer CA et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science298, 1025–1029 (2002).
  • Kozloff M, Hainsworth J, Badarinath S et al. Survival of patients (pts) with mCRC treated with bevacizumab in combination with chemotherapy: results from the BRiTE registry. Gastrointestinal Cancers Symposium, FL, USA (2007) Abstract No 375.
  • Yang JC, Haworth L, Sherry RM et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349(5), 427–434 (2003) .
  • Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol.170, 3369–3376 (2003).
  • Varney ML, Li A, Dave BJ, Bucana CD, Johansson SL, Singh RK. Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clin. Exp. Metastasis20, 723–731 (2003).
  • Varney ML, Johansson SL, Singh RK. Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. Am. J. Clin. Pathol.125, 209–216 (2006).
  • Kawada K, Sonoshita M, Sakashita H et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res.64, 4010–4017 (2004).
  • Scala S, Giuliano P, Ascierto PA et al. Human melanoma metastases express functional CXCR4. Clin. Cancer Res.12, 2427–2433 (2006).
  • Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J. Dermatol. Sci.36, 71–78 (2004).
  • Meijer J, Zeelenberg IS, Sipos B, Roos E. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res.66, 9576–9582 (2006).
  • Dellacasagrande J, Schreurs OJ, Hofgaard PO et al. Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand. J. Immunol.57, 534–544 (2003).
  • Li A, Varney ML, Singh RK. Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin. Cancer Res.7, 3298–3304 (2001).
  • Bendre MS, D Gaddy-Kurten, Mon-Foote T et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res.62, 5571–5579 (2002).
  • Andre F, Cabioglu N, Assi H et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann. Oncol.17, 945–951 (2006).
  • Perissinotto E, Cavalloni G, Leone F et al. Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin. Cancer Res.11, 490–497 (2005).
  • Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity12, 471–481 (2000).
  • Liu YL, Yu JM, Song XR, Wang XW, Xing LG, Gao BB. Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol. Ther.5, 1320–1326 (2006).
  • Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer, correlation with lymph node metastasis. Int. J. Cancer.105, 186–189 (2003).
  • Hu J, Deng X, Bian X et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin. Cancer Res.11, 4658–4665 (2005).
  • Murphy C, McGurk M, Pettigrew J et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin. Cancer Res.11, 4117–4127 (2005).
  • Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res.62, 1832–1837 (2002).
  • Sun YX, Schneider A, Jung Y et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J. Bone Miner. Res.20, 318–329 (2005).
  • Lu Y, Cai Z, Galson DL et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate66, 1311–1318 (2006).
  • Loberg RD, Day LL, Harwood J et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia8, 578–586 (2006).
  • Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia3, 33–42 (2001).

Website

  • Cytokine Family Database http://cytokine.medic.kumamoto-u.ac.jp

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.