288
Views
68
CrossRef citations to date
0
Altmetric
Review

Implication of nanoparticles/microparticles in mucosal vaccine delivery

&
Pages 401-418 | Published online: 09 Jan 2014

References

  • Davis SS. Nasal vaccines. Adv. Drug Del. Rev.51, 21–42 (2001).
  • Nugent J, Po AL, Scott EM. Design and delivery of non-parenteral vaccines. J. Clin. Pharm. Ther.23(4), 257–285 (1998).
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol.6, 148–158 (2006).
  • Mestecky J, Michalek SM, Moldoveanu Z, Russell MW. Routes of immunization and antigen delivery systems for optimal mucosal immune responses in humans. Behring Inst. Mitt.98, 33–43 (1997).
  • Czerkinsky C, Anjuere F, McGhee JR et al. Mucosal immunity and tolerance: relevance to vaccine development. Immunol. Rev.170, 197–222 (1999).
  • Hobson P, Bernfield C, Barnes A, Klavinskis L. Mucosal immunization with DNA vaccines. Methods31, 217–224 (2003).
  • McGhee JR, Lamm ME, Strober W. Mucosal immune responses: an overview. In: Mucosal Immunology (2nd Edition). Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (Eds). Academic Press, NY, USA 485–506 (1999).
  • Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev.14, 430–445 (2001).
  • Sminia T, Kraal G. Nasal-associated lymphoid tissue. In: Mucosal Immunology (2nd Edition). Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (Eds). Academic Press, NY, USA 357– 379 (1999).
  • Debertin AS, Tschernig T, Schurmann A, Bajanowski T, Brinkmann B, Pabst R. Coincidence of different structures of mucosa-associated lymphoid tissue (MALT) in the respiratory tract of children: no indications for enhanced mucosal immunostimulation in sudden infant death syndrome (SIDS). Clin. Exp. Immunol.146, 54–59 (2006).
  • Mestecky J, Moldoveanu Z, Russell MW. Immunologic uniqueness of the genital tract: challenge for vaccine development. Am. J. Reprod. Immunol.53, 208–214 (2005).
  • Stevceva L, Strober W. Mucosal HIV vaccines: where are we now? Curr. HIV Res.2, 1–10 (2004).
  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunization and adjuvants: a brief overview of recent advances and challenges. Vaccine21(Suppl. 2), S89–S95 (2003).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11(Suppl. 4), S45–S53 (2005).
  • Eriksson K, Kilander A, Hagberg L, Norkrans G, Holmgren J, Czerkinsky C. Induction and expression of intestinal humoral immunity in HIV-infected individuals: prospects for vaccination against secondary enteric infections. Pathobiology66, 176–182 (1998).
  • Magistris MTD. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv. Drug Del. Rev.58, 52–67 (2006).
  • Macian F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol.5(6), 472–484 (2005).
  • Levine MM. Can needle-free administration of vaccines become the norm in global immunization? Nat. Med.9, 99–103 (2003).
  • Ryan EJ, Daly LM, Mills KHG. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechol.19(8), 293–304 (2001).
  • Chen H. Recent advances in mucosal vaccine development. J. Control Rel.67, 117–128 (2000).
  • Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret J-F. Experience with registered mucosal vaccines. Vaccine21, 678–683 (2003).
  • Singh M, O’Hagan DT. The preparation and characterization of polymeric antigen delivery systems for oral administration. Adv. Drug Del. Rev.34, 285–304 (1998).
  • Andrianov AK, Payne LG. Polymeric carriers for oral uptake of microparticulates. Adv. Drug Del. Rev.34, 155–170 (1998).
  • Jaganathan KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine24(19), 4201–4211 (2006).
  • Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP. Lectin anchored stabilized biodegradable nanoparticles for oral immunization: 1. Development and in-vitro evaluation. Int. J. Pharm.318, 163–173 (2006).
  • O’Hagan DT. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat.189, 477–482 (1996).
  • Dea-Ayuela MA, Rama-Iniguez S, Torrado-Santiago S, Bolas-Fernandez F. Microcapsules formulated in the enteric coating copolymer Eudragit L100 as delivery systems for oral vaccination against infections by gastrointestinal nematode parasites. J. Drug Target.14, 567–575 (2006).
  • Tafaghodi M, Sajadi Tabasi SA, Jaafari MR. Formulation, characterization and release studies of alginate microspheres encapsulated with tetanus toxoid. J. Biomater. Sci. Poly. Ed.17, 909–924 (2006).
  • Sturesson C, Degling Wikingsson L. Comparison of poly (acryl starch) and poly (lactide-co-glycolide) microspheres as drug delivery system for a rotavirus vaccine. J. Control Rel.68, 441–450 (2000).
  • Litwin A, Flanagan M, Entis G et al. Immunologic effects of encapsulated short ragweed extract: a potent new agent for oral immunotherapy. Ann. Allergy Asthma Immunol.77, 132–138 (1996).
  • Haining WN, Anderson DG, Little SR et al. pH-triggered microparticles for peptide vaccination. J. Immunol.173, 2578–2585 (2004).
  • Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol.2, 361–367 (2001).
  • Payne LG, Jenkins SA, Andrianov AK, Roberts BE. Water-soluble phosphazene polymers for parenteral and mucosal vaccine delivery. In: Vaccine Design. Powell MF, Newman MJ (Eds). Plenum Press, NY, USA 473–493 (1995).
  • Payne LG, Jenkins SA, Woods AL et al. Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine16, 92–98 (1998).
  • Jani P, McCarthy DE, Florence AT. Nanosphere and microsphere uptake via Peyer’s patches: observation of the rate of uptake in the rat after a single oral dose. Int. J. Pharm.86, 239–246 (1992).
  • Florence AT. Nanoparticle uptake by oral route: fulfilling its potential? Drug Dis. Today2, 75–81 (2005).
  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there is a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm.50, 147–160 (2000).
  • Moghimi SM, Hawley AE, Christy NM, Gray T, Illum L, Davis SS. Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes. FEBS Lett.344, 25–30 (1994).
  • Shakweh M, Besnard M, Nicolas V, Fattal E. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by Peyer’s paches in mice. Eur. J. Pharm. Biopharm.61, 1–13 (2005).
  • Le Ray AM, Vert M, Gautier JC, Benoit JP. Fate of poly (DL-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int. J. Pharm.106, 201–211 (1994).
  • Eyles J, Alpar HO, Field WN, Lewis DA, Keswick M. The transfer of polystyrene microspheres from the gastrointestinal tract to the circulation after oral administration in the rat. J. Pharm. Pharmacol.47, 561–565 (1995).
  • Norris DA, Puri N, Sinko PJ. The effect of physical barriers and properties on the oral absorption of particulates. Adv. Drug Del. Rev.34, 135–154 (1998).
  • Migliaresi C, Fambri L, Cohn D. A study on the in vitro degradation of poly (lactic acid). J. Biomat. Sci. Poly. Ed.5, 591–606 (1994).
  • Cleek RL, Ting KC, Eskin SG, Mikos AG. Microparticles of poly (dl-lactic-co-glycolic acid)/poly (ethylene glycol) blends for controlled drug delivery. J. Control Rel.48, 259–268 (1997).
  • O’Hagan DT, Jeffery H, Davis SS. The preparation and microcharacterization of poly (lactide-co-glycolide) microparticles: III. Microparticle/polymer degradation rates and the in vitro release of model proteins. Int. J. Pharm.103, 37–45 (1994).
  • Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control Rel.82, 105–114 (2002).
  • Jaganathan KS, Singh P, Prabakaran D, Mishra V, Vyas SP. Development of a single-dose stabilized poly (d,l-lactic-co-glycolic acid) microsphere-based vaccine against hepatitis B. J. Pharm. Pharmacol.56, 1243–1250 (2004).
  • Pappo J, Ermak TH. Uptake and translocation of fluorescent latex particle by rabbit Peyer’s patch follicle epithalium: a quantitative model for M cell uptake. Clin. Exp. Immunol.76, 227–280 (1989).
  • Le Fever ME, Boccio AM, Jeol DD. Intestinal uptake of fluorescent microsphere in young and aged mice. Proc. Soc. Exp. Biol. Med.190, 23–27 (1989).
  • Simon L, Shine G, Dayan, AD. Effect of animal age on the uptake of large particulates across the epithelium of rat small intestine. Int. J. Exp. Pathol.75, 369–373 (1994).
  • Strous GJ, Dekker J. Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol.27, 57–92 (1992).
  • Desai MA, Mutlu M, Vadgama P. A study of macro-molecular diffusion through native porcine mucus. Experientia48, 22–26 (1992).
  • Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov. Today10, 1145–1157 (2005).
  • Lo D, Tynan W, Dickerson J et al. Cell culture modeling of specialized tissue: identification of genes expressed specifically by follicle associated epithelium of Peyer’s patch by expression profiling of Caco-2/Raji co-cultures. Int. Immunol.16, 91–99 (2004).
  • Lo D, Tynan W, Dickerson J et al. Peptidoglycan recognition protein expression in mouse Peyer’s patch follicle associated epithelium suggests functional specialization. Cell Immunol.224, 8–16 (2003).
  • Vyas SP, Singh A, Sihorkar V. Ligand-receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug Carrier Syst.18, 1–76 (2001).
  • Foster N, Clark MA, Jepson MA, Hirst BH. Ulex europaeus 1 lectin targets microspheres to mouse Peyer’s patch M-cells in vivo. Vaccine16, 536–541 (1998).
  • Giannasca PJ, Giannasca KT, Leichtner AM, Neutra MR. Human intestinal M cells display the sialyl Lewis A antigen. Infect. Immun.67, 946–953 (1999).
  • Singh P, Prabakaran D, Jain S, Mishra V, Jaganathan KS, Vyas SP. Cholera toxin B subunit conjugated bile salt stabilized vesicles (bilosomes) for oral immunization. Int. J. Pharm.278, 379–390 (2004).
  • Jain S, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J. Lipo. Res.16, 331–345 (2006).
  • Henderson B, Poole S, Wilson M. Bacterial modulins: novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev.60, 316–341 (1996).
  • Young VB, Falkow S, Schoolnik GK. The invasin protein of Yersinia enterocolitica: internalization of invasin bearing bacteria by eukaryotic cells is associated with reorganization of the cytoskeleton. J. Cell Biol.116, 197–207 (1992).
  • Jepson MA, Clark MA. Studying M cells and their role in infection. Trends Microbiol.6, 359–365 (1998).
  • Clark MA, Hirst BH, Jepson MA. Lectin-mediated mucosal delivery of drugs and microparticles. Adv. Drug Del. Rev.43, 207–223 (2000).
  • Durrer C, Irache JM, Duchene D, Ponchel G. Study of the interactions between nanoparticles and intestinal mucosal. Prog. Colloid. Polym. Sci.97, 275–280 (1994).
  • Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun.65, 1387–1394 (1997).
  • Uchida T, Martin S, Foster TP, Wardley RC, Grimm S. Dose and load studies for subcutaneous and oral delivery of poly (lactide-co-glycolide) microspheres containing ovalbumin. Pharm. Res.11, 1009–1015 (1994).
  • Del Giudice G, Covacci A, Telford JL, Montecucco C, Rappuole R. The design of vaccine against Helicobacter pylori and their development. Annu. Rev. Immunol.19, 523–563 (2001).
  • Kim SY, Doh HJ, Ahn JS et al. Induction of mucosal and systemic immune response by oral immunization with H. pylori lysate encapsulated in poly(D,L-lactide-co-glycolide) microparticles. Vaccine17, 607–616 (1999).
  • Partidos CD. Intranasal vaccines: forthcoming challenges. Pharm. Sci. Technolo. Today3, 273–281 (2000).
  • Wu HY, Russell MW. Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the common mucosal immune system. Immunol. Res.16, 187–201 (1997).
  • Yanagita M, Hiroi T, Kitagaki N et al. Nasopharyngeal-associated lymphoreticular tissue (NALT) immunity: fimbriae-specific Th1 and Th2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. J. Immunol.162, 3559–3565 (1999).
  • Shahin R, Leef M, Eldridge JH, Hudson M, Gilley RM. Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect. Immun.63, 1195–1200 (1995).
  • Moore A, McGuirk P, Adams S et al. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD81 cytotoxic T lymphocytes and CD41 Th1 cells. Vaccine13, 1741–1749 (1995).
  • Zhou F, Kraehenbuhl J-P, Neutra MR. Mucosal IgA response to rectally administered antigen formulated in IgA-coated liposomes. Vaccine13, 637–644 (1995).
  • Bergmeier LA, Tao L, Gearing AJM, Adams S, Lehner T. Comparison of IgA antibodies in vaginal and rectal fluids, serum and saliva following immunization of genital and gut-associated lymphoid tissue. In: Proc. 7th Int. Cong. Mucosal Immunol. Excerpta Medica, Amsterdam, The Netherlands 23 (1992).
  • O’Hagan DT, Rafferty D, Wharton S, Illum L. Intravaginal immunization in sheep using a bioadhesive microsphere antigen delivery system. Vaccine11, 660–664 (1993).
  • Tommaso AD, Saletti G, Pizza M et al. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heal labile enterotoxin as mucosal adjuvant. Infect. Immun.64, 974–979 (1996).
  • Olaguibel JM, Alvarez Puebla MJ. Efficacy of sublingual allergen vaccination for respiratory allergy in children: conclusions from one meta-analysis. J. Investig. Allergol. Clin. Immunol.15, 9–16 (2005).
  • Van Overtvelt L, Razafindratsita A, St-Lu N et al. Sublingual vaccines based on wild-type recombinant allergens. Allerg. Immunol. (Paris)38, 247–249 (2006).
  • Wheeler AW, Sharif S. Sublingual delivery of vaccines: can we enhance the immune response induced via this route? Eur. J. Pharm. Sci.4, S39 (1996).
  • Akdis CA, Barlan IB, Bahceciler N, Akdis M. Immunological mechanisms of sublingual immunotherapy. Allergy61, 11–14 (2006).
  • Moingeon P, Batard T, Fadel R, Frati F, Sieber J, Van Overtvelt L. Immune mechanisms of allergen-specific sublingual immunotherapy. Allergy61, 151–165 (2006).
  • Dilraj A, Cutts FT, de Castro JF et al. Response to different measles vaccine strains given by aerosol and subcutaneous routes to schoolchildren: a randomized trial. Lancet355, 798–803 (2000).
  • Nesburn AB, Burke RL, Ghiasi H, Slanina SM, Wechsler SL. Therapeutic periocular vaccination with a subunit vaccine induces higher levels of herpes simplex virus specific tear secretory immunoglobulin A than systemic vaccination and provide protection against recurrent spontaneous ocular shedding of virus in latently infected rabbits. Virology252, 200–209 (1998).
  • Coffin SE, Offit PA. Induction of mucosal B-cell memory by intramuscular inoculation of mice with rotavirus. J. Virol.72, 3479–3483 (1998).
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Del. Rev.28, 5–24 (1997).
  • Cadee JA, Brouwer LA, den Otter W, Hennink WE, van Luyn MJ. A comparative biocompatibility study of microspheres based on cross-linked dextran or poly(lactic-co-glycolic) acid after subcutaneous injection in rats. J. Biomed. Mater. Res.56, 600–609 (2001).
  • International Conference on Harmonization. Fed. Regist.62, 24302–24309 (1997).
  • Niu CH, Chiu YY. FDA perspective on peptide formulations and stability issues. J. Pharm. Sci.87, 1331–1334 (1998).
  • Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol. Lett.101, 41–49 (2005).
  • Jain S, Sharma RK, Vyas SP. Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J. Pharm. Pharmacol.58, 303–310 (2006).
  • Banerjee S, Medina-Fatimi A, Nichols R et al. Safety and efficacy of low-dose Escherichia coli enterotoxin adjuvant for urease-based oral immunization against Helicobacter pylori in healthy volunteers. Gut51, 634–640 (2002).
  • Metzger WG, Mansouri E, Kronawitter M et al. Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar Typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine22, 2273–2277 (2004).
  • Smythies LE, Novak MJ, Waites KB, Lindsey JR, Morrow CD, Smith PD. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease protect mice against H. pylori infection. Vaccine23, 901–909 (2005).
  • Durrer P, Gluck U, Spyr C et al. Mucosal antibody response induced with a nasal virosome-based influenza vaccine. Vaccine21, 4328–4334 (2003).
  • Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst B. Targeting polymerized liposome vaccine carrier to intestinal M cells. Vaccine20, 208–271 (2002).
  • Perez O, Bracho G, Lastre M et al. Proteoliposome-derived cochleate as an immunomodulator for nasal vaccine. Vaccine24(Suppl. 2), S52–S53 (2006).
  • Alpar HO, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev.57, 411–430 (2005).
  • Kozlowski PA, Williams SB, Lynch RM et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal or vaginal immunization: influence of the menstrual cycle. J. Immunol.169, 566–574 (2002).
  • Aguila A, Donachie AM, Peyre M, McSharry CP, Sesardic D, Mowat AM. Induction of protective and mucosal immunity against diphtheria by an immune stimulating complex (ISCOMS) based vaccine. Vaccine24, 5201–5210 (2006).
  • Rice J, Ainlev WM, Shewen P. Plant-made vaccines: biotechnology and immunology in animal health. Anim. Health Res. Rev.6, 199–209 (2005).
  • Thanavala Y, Mahoney M, Pal S et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl Acad. Sci. USA102, 3378–3382 (2005).
  • Holmgren J, Bergquist C. Oral B subunit killed whole-cell cholera vaccines. In: New Generation Vaccines (3rd Edition). Levine MM (Ed.). Marcel Decker, NY, USA (2004).
  • Richie EE, Punjabi NH, Sidharta YY et al. Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine18, 2399–2410 (2000).
  • De Vos B, Vesikari T, Linhares AC et al. A rotavirus vaccine for prophylaxis of infants against rotavirus gastroenteritis. Pediatr. Infect. Dis. J.23, S179–S182 (2004).
  • Svennerholm AM, Steele D, Microbial gut interactions in health and disease: progress in enteric vaccine development. Best Pract. Res. Clin. Gastroenterol.18, 421–445 (2004).
  • Cox RJ, Brokstad KA, Ogra P. Influenza virus: immunity and vaccination strategies: comparison of immune responses to inactivated and live attenuated influenza vaccines. Scand. J. Immunol.59, 1–15 (2004).
  • Mitragotri S. Immunization without needles. Nat. Rev. Immunol.5, 905–916 (2005).
  • Wilson DR, Torres Lima M, Dirham SR. Sublingual immunotherapy for allergic rhinitis: systematic review and meta-analysis. Allergy60, 4–12 (2005).
  • Seal M, Arnon R, Schechter B. Therapeutic vaccines: realities of today and hopes for the future. Drug Dis. Today7, 664–672 (2002).
  • Clark MA, Jepson MA, Simmons NL, Hirst BH. Selective binding and transcytosis of Ulex europaeus 1 lectin by mouse Peyer’s patch M-cells in vivo. Cell Tissue Res.282, 455–461 (1995).
  • Chen H, Torchilin V, Langer R. Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res.13, 1378–1383 (1996).
  • Kabok Z, Ermak TH, Pappo J. Microheterogeneity of follicle epithelium and M cells in rabbit gut-associated lymphoid tissues defined by monoclonal antibodies. FASEB J.8, A1008 (1994).
  • Carreno-Gomez B, Woodley JF, Florence AT. Studies on the uptake of tomato lectin nanoparticles in everted gut sacs. Int. J. Pharm.183, 7–11 (1999).
  • Porta C, James PS, Phillips AD, Savidge TC, Smith MW, Cremaschi D. Confocal analysis of fluorescent bead uptake by mouse Peyer’s patch follicle-associated M cells. Exp. Physiol.77, 929–932 (1992).
  • Giannasca PJ, Boden JA, Monath TP. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins. Infect. Immun.65, 4288–4298 (1997).
  • Hussain N, Florence AT. Utilizing bacterial mechanisms of epithelial cell entry: invasin-induced oral uptake of latex nanoparticles. Pharm. Res.15, 153–156 (1998).
  • Harokopakis E, Childers NK, Michalek SM, Zhang SS, Tomasi M. Conjugation of cholera toxin or its B subunit to liposomes for targeted delivery of antigens. J. Immunol. Meth.185, 31–42 (1995).
  • Conacher M, Alexander J, Brewer JM. Oral immunization with peptide and protein antigens by formulations in lipid vesicles incorporating bile salts (bilosomes). Vaccine19, 2965–2974 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.