511
Views
108
CrossRef citations to date
0
Altmetric
Review

Design and development of synthetic peptide vaccines: past, present and future

, , &
Pages 591-603 | Published online: 09 Jan 2014

References

  • Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res.13, 835–837 (1953).
  • Baldwin RW. Immunity to methylcholanthrene-induced tumors in inbred rats following atrophy and regression of implanted tumors. Br. J. Cancer9, 652–665 (1955).
  • Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J. Natl Cancer Inst.18, 769–778 (1957).
  • Klein G, Sjogren HO, Klein E, Hellström KE. Demonstration of resistance against mythylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res.20, 1561–1572 (1960).
  • Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature248, 701–702 (1974).
  • Townsend AR, McMichael AJ, Carter NP, Huddleston JA, Brownlee GG. Cytotoxic T cell recognition of the influenza nucleoprotein and hemagglutinin expressed in transfected mouse L cells. Cell39, 13–25 (1984).
  • Townsend AR, Gotch FM, Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell42, 457–467 (1985).
  • Townsend AR, Rothbard J, Gotch FM. et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell44, 959–968 (1986).
  • Falk K, Rotzschke O, Rammensee HG. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature348, 248–251 (1990).
  • Rotzschke O, Falk K, Deres K et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature348, 252–254 (1990).
  • Rotzschke O, Falk K, Wallny HJ, Faath S, Rammensee HG. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y. Science249, 283–287 (1990).
  • Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature351, 290–296 (1991).
  • Rotzschke O, Falk K, Stevanovic S et al. Exact prediction of a natural T cell epitope. Eur. J. Immunol.21, 2891–2894 (1991).
  • Pamer EG, Harty JT, Bevan MJ. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature353, 852–855 (1991).
  • Calin-Laurens V, Trescol-Biemont MC, Gerlier D, Rabourdin-Combe C Can one predict antigenic peptides for MHC class I-restricted cytotoxic T lymphocytes useful for vaccination? Vaccine11, 974–978 (1993).
  • Oldstone MB, Lewicki H, Borrow P, Hudrisier D, Gairin JE. Discriminated selection among viral peptides with the appropriate anchor residues: implications for the size of the cytotoxic T-lymphocyte repertoire and control of viral infection. J. Virol.69, 7423–7429 (1995).
  • Aichele P, Hengartner H, Zinkernagel RM, Schulz M. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. J. Exp. Med.171, 1815–1820 (1990).
  • Schulz M, Zinkernagel RM, Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc. Natl Acad. Sci. USA88, 991–993 (1991).
  • Kast WM, Roux L, Curren J et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc. Natl Acad. Sci. USA88, 2283–2287 (1991).
  • Feltkamp MC, Smits HL, Vierboom MP et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur. J. Immunol.23, 2242–2249 (1993).
  • Noguchi Y, Chen YT, Old LJ. A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA91, 3171–3175 (1994).
  • Mandelboim O, Vadai E, Fridkin M et al. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat. Med.1, 1179–1183 (1995).
  • Widmann C, Romero P, Maryanski JL, Corradin G, Valmori D. T helper epitopes enhance the cytotoxic response of mice immunized with MHC class I-restricted malaria peptides. J. Immunol. Methods155, 95–99 (1992).
  • Overwijk WW, Tsung A, Irvine KR et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J. Exp. Med.188, 277–286 (1998).
  • Knutson KL, Schiffman K, Cheever MA, Disis ML. Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin. Cancer Res.8, 1014–1018 (2002).
  • Kyburz D, Aichele P, Speiser DE et al. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur. J. Immunol.23, 1956–1962 (1993).
  • Aichele P, Brduscha-Riem K, Zinkernagel RM, Hengartner H, Pircher H. T cell priming versus T cell tolerance induced by synthetic peptides. J. Exp. Med.182, 261–266 (1995).
  • Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med.187, 693–702 (1998).
  • Toes RE, Blom RJ, Offringa R, Kast WM, Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J. Immunol.156, 3911–3918 (1996).
  • Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA93, 7855–7860 (1996).
  • Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Part I: vaccines for solid tumours. Lancet Oncol.5, 681–689 (2004).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10, 909–915 (2004).
  • Feltkamp MC, Vierboom MP, Kast WM, Melief CJ. Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol. Immunol.31, 1391–1401 (1994).
  • Sette A, Vitiello A, B Reherman et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol.153, 5586–5592 (1994).
  • Chen W, Khilko S, Fecondo J, Margulies DH, McCluskey J. Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues. J. Exp. Med.180, 1471–1483 (1994).
  • van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol.156, 3308–3314 (1996).
  • Valmori D, Fonteneau JF, Lizana CM et al. Enhanced generation of specific tumor-reactive CTL iin vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J. Immunol.160, 1750–1758 (1998).
  • Tsuboi A, Oka Y, Udaka K et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. 51, 614–620 (2002).
  • Tang Y, Lin Z, Ni B et al. An altered peptide ligand for naive cytotoxic T lymphocyte epitope of TRP-2(180–188) enhanced immunogenicity. Cancer Immunol. Immunother.56, 319–329 (2007).
  • Dyall R, Bowne WB, Weber LW et al. Heteroclitic immunization induces tumor immunity. J. Exp. Med.188, 1553–1561 (1998).
  • Vierboom MP, Feltkamp MC, Neisig A et al. Peptide vaccination with an anchor-replaced CTL epitope protects against human papillomavirus type 16-induced tumors expressing the wild-type epitope. J. Immunother.21, 399–408 (1998).
  • Rosenberg SA. Development of cancer immunotherapies based on identification of the genes encoding cancer regression antigens. J Natl Cancer Inst.88, 1635–1644 (1996).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med.4, 321–327 (1998).
  • Rivoltini L, Squarcina P, Loftus DJ et al. A superagonist variant of peptide MART1/Melan A27–35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res.59, 301–306 (1999).
  • Wang F, Ono T, Kalergis AM et al. On defining the rules for interactions between the T cell receptor and its ligand: a critical role for a specific amino acid residue of the T cell receptor beta chain. Proc. Natl Acad. Sci. USA95, 5217–5222 (1998).
  • Kalergis AM, Ono T, F Wang et al. Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V beta repertoire of the responding CD8+ cytotoxic lymphocyte population. J. Immunol.162, 7263–7270 (1999).
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat. Med.10, 475–480 (2004).
  • Keene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J. Exp. Med.155, 768–782 (1982).
  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998).
  • Bennett SR, Carbone FR, F Karamalis et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998).
  • Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998).
  • Janssen EM, Lemmens EE, T Wolfe et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421, 852–856 (2003).
  • Fayolle C, Deriaud E, Leclerc C. In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J. Immunol.147, 4069–4073 (1991).
  • Greenberg PD. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv. Immunol.49, 281–355 (1991).
  • Scheibenbogen C, Schadendorf D, Bechrakis NE et al. Effects of granulocyte–macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides. Int. J. Cancer104, 188–194 (2003).
  • Shirai M, Pendleton CD, Ahlers J et al. Helper-cytotoxic T lymphocyte (CTL) determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J. Immunol.152, 549–556 (1994).
  • Hiranuma K, Tamaki S, Nishimura Y et al. Helper T cell determinant peptide contributes to induction of cellular immune responses by peptide vaccines against hepatitis C virus. J. Gen. Virol.80(Pt 1), 187–193 (1999).
  • Slingluff CL Jr, Yamshchikov G, Neese P et al. Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin. Cancer Res.7, 3012–3024 (2001).
  • Del VM, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell66, 1145–1153 (1991).
  • Gileadi U, Gallimore A, BP van der, Cerundolo V. Effect of epitope flanking residues on the presentation of N-terminal cytotoxic T lymphocyte epitopes. Eur. J. Immunol.29, 2213–2222 (1999).
  • Tindle RW, Fernando GJ, Sterling JC, Frazer IH. A “public” T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc. Natl Acad. Sci. USA88, 5887–5891 (1991).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc. Natl Acad. Sci. USA101, 10697–10702 (2004).
  • Ayyoub M, Merlo A, Hesdorffer CS et al. Distinct but overlapping T helper epitopes in the 37–58 region of SSX-2. Clin. Immunol.114, 70–78 (2005).
  • Bioley G, Jandus C, Tuyaerts S et al. Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J. Immunol.177, 6769–6779 (2006).
  • Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest.107, 477–484 (2001).
  • Valmori D, Romero JF, Men Y et al. Induction of a cytotoxic T cell response by co-injection of a T helper peptide and a cytotoxic T lymphocyte peptide in incomplete Freund’s adjuvant (IFA): further enhancement by pre-injection of IFA alone. Eur. J. Immunol.24, 1458–1462 (1994).
  • Casares N, Lasarte JJ, de Cerio AL et al. Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur. J. Immunol.31, 1780–1789 (2001).
  • Utermohlen O, Schulze-Garg O, Warnecke G et al. Simian virus 40 large-T-antigen-specific rejection of mKSA tumor cells in BALB/c mice is critically dependent on both strictly tumor-associated, tumor-specific CD8(+) cytotoxic T lymphocytes and CD4(+) T helper cells. J. Virol.75, 10593–10602 (2001).
  • Steinaa L, Rasmussen PB, Wegener AM et al. Linked foreign T-cell help activates self-reactive CTL and inhibits tumor growth. J. Immunol.175, 329–334 (2005).
  • Bos R, van DS, van HT et al. Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res.65, 6443–6449 (2005).
  • Diehl L, AT den Boer, Schoenberger SP et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med.5, 774–779 (1999).
  • van Mierlo GJ, AT den Boer, Medema JP et al. CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc. Natl Acad. Sci. USA99, 5561–5566 (2002).
  • van Mierlo GJ, Boonman ZF, Dumortier HM et al. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J. Immunol.173, 6753–6759 (2004).
  • den Boer AT, Diehl L, van Mierlo GJ et al. Longevity of antigen presentation and activation status of APC are decisive factors in the balance between CTL immunity versus tolerance. J. Immunol.167, 2522–2528 (2001).
  • Zwaveling S, Ferreira Mota SC, Nouta J et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol.169, 350–358 (2002).
  • van der Burg SH, Bijker MS, Welters MJ, Offringa R, Melief CJ. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv. Drug Deliv. Rev.58, 916–930 (2006).
  • Kast WM, Brandt RM, Melief CJ. Strict peptide length is not required for the induction of cytotoxic T lymphocyte-mediated antiviral protection by peptide vaccination. Eur. J. Immunol.23, 1189–1192 (1993).
  • Gao XM, Zheng B, Liew FY, Brett S, Tite J. Priming of influenza virus-specific cytotoxic T lymphocytes in vivo by short synthetic peptides. J. Immunol.147, 3268–3273 (1991).
  • Minev BR, McFarland BJ, Spiess PJ, Rosenberg SA, Restifo NP. Insertion signal sequence fused to minimal peptides elicits specific CD8+ T-cell responses and prolongs survival of thymoma-bearing mice. Cancer Res.54, 4155–4161 (1994).
  • Reinholdsson-Ljunggren G, Ramqvist T, Ahrlund-Richter L, Dalianis T. Immunization against polyoma tumors with synthetic peptides derived from the sequences of middle- and large-T antigens. Int. J. Cancer50, 142–146 (1992).
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol.19, 47–64 (2001).
  • Jensen FC, Savary JR, Diveley JP, Chang JC. Adjuvant activity of incomplete Freund’s adjuvant. Adv. Drug Deliv. Rev.32, 173–186 (1998).
  • Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. ISCOM, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature308, 457–460 (1984).
  • Sjolander A, Drane D, Maraskovsky E et al. Immune responses to ISCOM formulations in animal and primate models. Vaccine19, 2661–2665 (2001).
  • Ulevitch RJ. Therapeutics targeting the innate immune system. Nat. Rev. Immunol.4, 512–520 (2004).
  • Ahonen CL, Doxsee CL, McGurran SM et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med.199, 775–784 (2004).
  • Welters MJ, Bijker MS, van den Eeden SJ et al. Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. Vaccine25, 1379–1389 (2007).
  • Fries LF, Gordon DM, Richards RL et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc. Natl Acad. Sci. USA89, 358–362 (1992).
  • Speiser DE, Lienard D, N Rufer et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115, 739–746 (2005).
  • Deres K, Schild H, Wiesmuller KH, Jung G, Rammensee HG. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature342, 561–564 (1989).
  • Maurer T, Heit A, Hochrein H et al. CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol.32, 2356–2364 (2002).
  • Khan S, Bijker MS, Weterings JJ et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem.282, 21145–21159 (2007).
  • Jackson DC, Lau YF, Le T et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA101, 15440–15445 (2004).
  • Borges E, Wiesmuller KH, Jung G, Walden P. Efficacy of synthetic vaccines in the induction of cytotoxic T lymphocytes. Comparison of the costimulating support provided by helper T cells and lipoamino acid. J. Immunol. Methods173, 253–263 (1994).
  • Heit A, Schmitz F, O’Keeffe M et al. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J. Immunol.174, 4373–4380 (2005).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6, 769–776 (2005).
  • Warger T, Osterloh P, Rechtsteiner Get al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood108, 544–550 (2006).
  • Sutmuller RP, MH den Brok, Kramer M et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest.116, 485–494 (2006).
  • Mellor AL, Baban B, Chandler PR et al. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J. Immunol.175, 5601–5605 (2005).
  • Weijzen S, Meredith SC, Velders MP et al. Pharmacokinetic differences between a T cell-tolerizing and a T cell-activating peptide. J. Immunol.166, 7151–7157 (2001).
  • Bennett SR, Carbone FR, Toy T, Miller JF, Heath WR. B cells directly tolerize CD8(+) T cells. J. Exp. Med.188, 1977–1983 (1998).
  • Suhrbier A, Burrows SR, Fernan A et al. Peptide epitope induced apoptosis of human cytotoxic T lymphocytes. Implications for peripheral T cell deletion and peptide vaccination. J. Immunol.150, 2169–2178 (1993).
  • Su MW, Walden PR, Golan DB, Eisen HN. Cognate peptide-induced destruction of CD8+ cytotoxic T lymphocytes is due to fratricide. J. Immunol.151, 658–667 (1993).
  • Diehl L, AT den Boer, Schoenberger SP et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med.5, 774–779 (1999).
  • Yamshchikov GV, Mullins DW, Chang CC et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J. Immunol.174, 6863–6871 (2005).
  • Lehmann F, Marchand M, Hainaut P et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur. J. Immunol.25, 340–347 (1995).
  • Vambutas A, DeVoti J, Nouri M et al. Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine23, 5271–5280 (2005).
  • Lopez JA, Weilenman C, Audran R et al. A synthetic malaria vaccine elicits a potent CD8(+) and CD4(+) T lymphocyte immune response in humans. Implications for vaccination strategies. Eur. J. Immunol.31, 1989–1998 (2001).
  • Perlaza BL, Sauzet JP, Balde AT et al. Long synthetic peptides encompassing the Plasmodium falciparum LSA3 are the target of human B and T cells and are potent inducers of B helper, T helper and cytolytic T cell responses in mice. Eur. J. Immunol.31, 2200–2209 (2001).
  • Meraldi V, Romero JF, Kensil C, Corradin G. A strong CD8+ T cell response is elicited using the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei together with the adjuvant QS-21: quantitative and phenotypic comparison with the vaccine model of irradiated sporozoites. Vaccine23, 2801–2812 (2005).
  • Audran R, Cachat M, Lurati F et al. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect. Immun.73, 8017–8026 (2005).
  • Mata E, Carcaboso AM, Hernandez RM et al. Adjuvant activity of polymer microparticles and Montanide ISA 720 on immune responses to Plasmodium falciparum MSP2 long synthetic peptides in mice. Vaccine25, 877–885 (2007).
  • Welters MJ, Filippov DV, van den Eeden SJ et al. Chemically synthesized protein as tumour-specific vaccine: immunogenicity and efficacy of synthetic HPV16 E7 in the TC-1 mouse tumour model. Vaccine23, 305–311 (2004).
  • Idenoue S, Hirohashi Y, Torigoe T et al. A potent immunogenic general cancer vaccine that targets survivin, an inhibitor of apoptosis proteins. Clin. Cancer Res.11, 1474–1482 (2005).
  • Andersen MH, Svane IM, Kvistborg P et al. Immunogenicity of Bcl-2 in patients with cancer. Blood105, 728–734 (2005).
  • Andersen MH, Reker S, Kvistborg P, Becker JC, thor SP. Spontaneous immunity against Bcl-xL in cancer patients. J. Immunol.175, 2709–2714 (2005).
  • Andersen MH, Becker JC, thor SP. The antiapoptotic member of the Bcl-2 family Mcl-1 is a CTL target in cancer patients. Leukemia19, 484–485 (2005).
  • Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity10, 673–679 (1999).
  • Janjic B, Andrade P, Wang XF et al. Spontaneous CD4+ T cell responses against TRAG-3 in patients with melanoma and breast cancers. J. Immunol.177, 2717–2727 (2006).
  • Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J. Immunother. Emphasis. Tumor Immunol.18, 86–94 (1995).
  • Heit A, Maurer T, Hochrein H et al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J. Immunol.170, 2802–2805 (2003).
  • Romano F, Cesana G, Caprotti R et al. Preoperative IL-2 immunotherapy enhances tumor infiltrating lymphocytes (TILs) in gastric cancer patients. Hepatogastroenterology53, 634–638 (2006).
  • Picker LJ, EF Reed-Inderbitzin, Hagen SI et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J. Clin. Invest.116, 1514–1524 (2006).
  • Klebanoff CA, Finkelstein SE, Surman DR et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA101, 1969–1974 (2004).
  • Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science311, 1924–1927 (2006).
  • Rubinstein MP, Kovar M, Purton JF et al. Converting IL-15 to a superagonist by binding to soluble IL-15Rα Proc. Natl Acad. Sci. USA103, 9166–9171 (2006).
  • Stoklasek TA, Schluns KS, Lefrancois L. Combined IL-15/IL-15Rα immunotherapy maximizes IL-15 activity in vivo. J. Immunol.177, 6072–6080 (2006).
  • Wang HY, Lee DA, Peng G et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity20, 107–118 (2004).
  • Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood107, 628–636 (2006).
  • van der Burg SH, Piersma SJ, de Jong A et al. Association of cervical cancer with the presence of CD4+ regulatory T-cells specific for human papillomavirus antigens. Proc. Natl Acad. Sci. USA (2007) (Epub ahead of print).
  • Berd D, Mastrangelo MJ. Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res.47, 3317–3321 (1987).
  • Frankel AE, Powell BL, Lilly MB. Diphtheria toxin conjugate therapy of cancer. Cancer Chemother. Biol. Response Modif.20, 301–313 (2002).
  • Dannull J, Su Z, D Rizzieri et al. Enhancement of vaccine-mediated antitumor Immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115, 3623–3633 (2005).
  • Weinberg AD, Rivera MM, Prell R et al. Engagement of the OX-40 receptor in vivo enhances antitumor Immunity. J. Immunol.164, 2160–2169 (2000).
  • Pan PY, Zang Y, Weber K, Meseck ML, Chen SH. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol. Ther.6, 528–536 (2002).
  • Diehl L, GJ van Mierlo, den Boer AT et al.In vivo triggering through 4–1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J. Immunol.168, 3755–3762 (2002).
  • Rosenberg SA, Sherry RM, KE Morton et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol.175, 6169–6176 (2005).
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science271, 1734–1736 (1996).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100, 8372–8377 (2003).
  • Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J. Exp. Med.203, 2223–2227 (2006).
  • Loeser S, Loser K, Bijker MS et al. Spontaneous tumor rejection by cbl-b-deficient CD8+ T cells. J. Exp. Med.204(4), 879–891 (2007)
  • Gajewski TF, Meng Y, Blank C et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev.213, 131–145 (2006).
  • Obeid M, Tesniere A, Ghiringhelli F et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med.13, 54–61 (2007).
  • Prinz BM, Hafner J, Dummer R et al. Treatment of Bowen’s disease with imiquimod 5% cream in transplant recipients. Transplantation77, 790–791 (2004).
  • Waeckerle-Men Y, AE Uetz-von, Fopp M et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol. Immunother.55, 1524–1533 (2006).
  • Lee P, Wang F, Kuniyoshi J et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J. Clin. Oncol.19, 3836–3847 (2001).
  • Valmori D, Dutoit V, Ayyoub M et al. Simultaneous CD8+ T cell responses to multiple tumor antigen epitopes in a multipeptide melanoma vaccine. Cancer Immun.3, 15 (2003).
  • Lefrancois L, Marzo A, Williams K. Sustained response initiation is required for T cell clonal expansion but not for effector or memory development in vivo. J. Immunol.171, 2832–2839 (2003).
  • Stock AT, Mueller SN, AL van Lint, Heath WR, Carbone FR. Cutting edge: prolonged antigen presentation after herpes simplex virus-1 skin infection. J. Immunol.173, 2241–2244 (2004).
  • Bins AD, Jorritsma A, Wolkers MC et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat. Med.11, 899–904 (2005).
  • Antony PA, Piccirillo CA, Akpinarli A et al. CD8+ T cell Immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol.174, 2591–2601 (2005).
  • Ashton-Rickardt PG. A license to remember. Nat. Immunol.5, 1097–1098 (2004).
  • Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin. Cancer Res.5, 1289–1297 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.