221
Views
14
CrossRef citations to date
0
Altmetric
Review

Dendritic cell vaccination

, , , &
Pages 617-633 | Published online: 09 Jan 2014

References

  • Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat. Rev. Drug Discov.6(5), 349–356 (2007).
  • Pietersz GA, Pouniotis DS, Apostolopoulos V. Design of peptide-based vaccines for cancer. Curr. Med. Chem.13(14), 1591–1607 (2006).
  • Sheng KC, Pietersz GA, Wright MD, Apostolopoulos V. Dendritic cells: activation and maturation – applications for cancer immunotherapy. Curr. Med. Chem.12(15), 1783–1800 (2005).
  • Osada T, Clay T, Hobeika A, Lyerly HK, Morse MA. NK cell activation by dendritic cell vaccine: a mechanism of action for clinical activity. Cancer Immunol. Immunother.55(9), 1122–1131 (2006).
  • Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity26(4), 503–517 (2007).
  • Qi H, Egen JG, Huang AY, Germain RN. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science,312(5780), 1672–1676 (2006).
  • Kim R, Emi M, Tanabe K. Functional roles of immature dendritic cells in impaired immunity of solid tumour and their targeted strategies for provoking tumour immunity. Clin. Exp. Immunol.146(2), 189–196 (2006).
  • Proudfoot O, Apostolopoulos V, Pietersz GA. Receptor-mediated delivery of antigens to dendritic cells: anticancer applications. Mol. Pharm.4(1), 58–72 (2007).
  • Tatsumi T, Takehara T, Yamaguchi S et al. Intrahepatic delivery of α-galactosylceramide-pulsed dendritic cells suppresses liver tumor. Hepatology,45(1), 22–30 (2007).
  • Weigel BJ, Panoskaltsis-Mortari A, Diers M et al. Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses. Exp. Hematol.34(10), 1403–1412 (2006).
  • Kaplan JM, Yu Q, Piraino ST et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J. Immunol.163(2), 699–707 (1999).
  • Broder H, Anderson A, Odesa SK, Kremen TJ, Liau LM. Recombinant adenovirus-transduced dendritic cell immunization in a murine model of central nervous system tumor. Neurosurg. Focus9(6), E6 (2000).
  • Ojima T, Iwahashi M, Nakamura M et al. The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Int. J. Oncol.28(4), 947–953 (2006).
  • Okada N, Iiyama S, Okada Y et al. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther.12(1), 72–83 (2005).
  • Chinnasamy N, Treisman JS, Oaks MK, Hanson JP, Chinnasamy D. Ex vivo generation of genetically modified dendritic cells for immunotherapy: implications of lymphocyte contamination. Gene Ther.12(3), 259–271 (2005).
  • Gust TC, Zenke M. RNA transfer and its use in dendritic cell-based immunotherapy. Expert Opin. Biol. Ther.5(2), 173–181 (2005).
  • Shimizu K, Kuriyama H, Kjaergaard J, Lee W, Tanaka H, Shu S. Comparative analysis of antigen loading strategies of dendritic cells for tumor immunotherapy. J. Immunother.27(4), 265–272 (2004).
  • Galea-Lauri J, Wells JW, Darling D, Harrison P, Farzaneh F. Strategies for antigen choice and priming of dendritic cells influence the polarization and efficacy of antitumor T-cell responses in dendritic cell-based cancer vaccination. Cancer Immunol. Immunother.53(11), 963–977 (2004).
  • Kao JY, Zhang M, Chen CM, Chen JJ. Superior efficacy of dendritic cell-tumor fusion vaccine compared with tumor lysate-pulsed dendritic cell vaccine in colon cancer. Immunol. Lett.101(2), 154–159 (2005).
  • Ogawa F, Iinuma H, Iwasaki K et al. Fusion vaccine therapy by IL-2-gene-transduced dendritic cells and tumor cells. Gan To Kagaku Ryoho,32(11), 1580–1582 (2005).
  • Iinuma H, Okinaga K, Fukushima R et al. Superior protective and therapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma. J. Immunol.176(6), 3461–3469 (2006).
  • Kugler A, Stuhler G, Walden P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids. Nat. Med.6(3), 332–336 (2000).
  • Kugler A, Stuhler G, Walden P et al. Retraction: regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids. Nat. Med.9(9), 1221 (2003).
  • No authors listed. The long road to retraction. Nat. Med.9(9), 1093 (2003).
  • Mayordomo JI, Zorina T, Storkus WJ et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med.1(12), 1297–1302 (1995).
  • Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176(6), 1693–1702 (1992).
  • Daro E, Butz E, Smith J, Teepe M, Maliszewski CR, McKenna HJ. Comparison of the functional properties of murine dendritic cells generated in vivo with Flt3 ligand, GM-CSF and Flt3 ligand plus GM-SCF. Cytokine17(3), 119–130 (2002).
  • Zou GM, Tam YK. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur. Cytokine Netw.13(2), 186–199 (2002).
  • Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood96(9), 3029–3039 (2000).
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med.179(4), 1109–1118 (1994).
  • Mayordomo JI, Zorina T, Storkus WJ et al. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells15(2), 94–103 (1997).
  • Schreurs MW, Eggert AA, de Boer AJ, Figdor CG, Adema GJ. Generation and functional characterization of mouse monocyte-derived dendritic cells. Eur. J. Immunol.29(9), 2835–2841 (1999).
  • Naik SH, Proietto AI, Wilson NS et al. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol.174(11), 6592–6597 (2005).
  • Brawand P, Fitzpatrick DR, Greenfield BW, Brasel K, Maliszewski CR, De Smedt T. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J. Immunol.169(12), 6711–6719 (2002).
  • Angelov GS, Tomkowiak M, Marcais A, Leverrier Y, Marvel J. Flt3 ligand-generated murine plasmacytoid and conventional dendritic cells differ in their capacity to prime naive CD8 T cells and to generate memory cells in vivo. J. Immunol.175(1), 189–195 (2005).
  • Pawlowska AB, Hashino S, McKenna H, Weigel BJ, Taylor PA, Blazar BR. In vitro tumor-pulsed or in vivo Flt3 ligand-generated dendritic cells provide protection against acute myelogenous leukemia in nontransplanted or syngeneic bone marrow-transplanted mice. Blood97(5), 1474–1482 (2001).
  • Weigel BJ, Nath N, Taylor PA et al. Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood100(12), 4169–4176 (2002).
  • Maraskovsky E, Brasel K, Teepe M et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med.184(5), 1953–1962 (1996).
  • Osada T, Clay TM, Woo CY, Morse MA, Lyerly HK. Dendritic cell-based immunotherapy. Int. Rev. Immunol.25(5–6), 377–413 (2006).
  • Steinman RM. Some interfaces of dendritic cell biology. Apmis111(7–8), 675–697 (2003).
  • Soruri A, Zwirner J. Dendritic cells: limited potential in immunotherapy. Int. J. Biochem. Cell Biol.37(2), 241–245 (2005).
  • de Vries IJ, Lesterhuis WJ, Scharenborg NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res.9(14), 5091–5100 (2003).
  • Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica88(10), 1139–1149 (2003).
  • Santin AD, Bellone S, Palmieri M et al. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol. Oncol.100(3), 469–478 (2006).
  • Palucka AK, Ueno H, Connolly J et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother.29(5), 545–557 (2006).
  • Schwaab T, Tretter CP, Gibson JJ et al. Tumor-related immunity in prostate cancer patients treated with human recombinant granulocyte monocyte-colony stimulating factor (GM-CSF). Prostate66(6), 667–674 (2006).
  • Gitlitz BJ, Figlin RA, Kiertscher SM, Moldawer N, Rosen F, Roth MD. Phase I trial of granulocyte macrophage-colony stimulating factor and interleukin-4 as a combined immunotherapy for patients with cancer. J. Immunother.26(2), 171–178 (2003).
  • Oosterling SJ, Mels AK, Geijtenbeek TB et al. Preoperative granulocyte/macrophage colony-stimulating factor (GM-CSF) increases hepatic dendritic cell numbers and clustering with lymphocytes in colorectal cancer patients. Immunobiology211(6–8), 641–649 (2006).
  • Muller H, Nakchbandi V, Chatzisavvidis I, von Voigt C. Repetitive chemoembolization with melphalan plus intra-arterial immuno-chemotherapy within 5-fluorouracil and granulocyte-macrophage colony-stimulating factor (GM-CSF) as effective first- and second-line treatment of disseminated colorectal liver metastases. Hepatogastroenterology50(54), 1919–1926 (2003).
  • Slingluff CLJr, Petroni GR, Yamshchikov GV et al. Clinical and immunologic results of a randomized Phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol.21(21), 4016–4026 (2003).
  • Kiertscher SM, Gitlitz BJ, Figlin RA, Roth MD. Granulocyte/macrophage-colony stimulating factor and interleukin-4 expand and activate type-1 dendritic cells (DC1) when administered in vivo to cancer patients. Int. J. Cancer107(2), 256–261 (2003).
  • Koulova L, Novik Y, Caliendo G, Wiernik P, Dutcher J. A Phase 2 study of moderate dose interleukin-2 and granulocyte-macrophage colony-stimulating factor in patients with metastatic or unresectable renal cell carcinoma. J. Immunother.28(6), 576–581 (2005).
  • Curti A, Isidori A, Ferri E et al. Generation of dendritic cells from positively selected CD14+ monocytes for anti-tumor immunotherapy. Leuk. Lymphoma45(7), 1419–1428 (2004).
  • Lee JJ, Kook H, Park MS et al. Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J. Clin. Apher,19(2), 66–70 (2004).
  • Lee JJ, Park MS, Park JS et al. Induction of leukemic-cell-specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens. J. Clin. Apher.21(3), 188–194 (2006).
  • Litzow MR, Dietz AB, Bulur PA et al. Testing the safety of clinical-grade mature autologous myeloid DC in a Phase I clinical immunotherapy trial of CML. Cytotherapy8(3), 290–298 (2006).
  • Babatz J, Rollig C, Lobel B et al. Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol. Immunother.55(3), 268–276 (2006).
  • Oosterwijk-Wakka JC, Tiemessen DM, Bleumer I et al. Vaccination of patients with metastatic renal cell carcinoma with autologous dendritic cells pulsed with autologous tumor antigens in combination with interleukin-2: a Phase 1 study. J. Immunother.25(6), 500–508 (2002).
  • Gitlitz BJ, Belldegrun AS, Zisman A et al. A pilot trial of tumor lysate-loaded dendritic cells for the treatment of metastatic renal cell carcinoma. J. Immunother.26(5), 412–419 (2003).
  • Motta MR, Castellani S, Rizzi S et al. Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination. Br. J. Haematol.121(2), 240–250 (2003).
  • Friedl J, Stift A, Paolini P et al. Tumor antigen pulsed dendritic cells enhance the cytolytic activity of tumor infiltrating lymphocytes in human hepatocellular cancer. Cancer Biother. Radiopharm.15(5), 477–486 (2000).
  • Caux C, Massacrier C, Vanbervliet B et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor a: II. Functional analysis. Blood90(4), 1458–1470 (1997).
  • Nencioni A, Brossart P. Cellular immunotherapy with dendritic cells in cancer: current status. Stem Cells22(4), 501–513 (2004).
  • Paczesny S, Banchereau J, Wittkowski KM, Saracino G, Fay J, Palucka AK. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med.199(11), 1503–1511 (2004).
  • Banchereau J, Ueno H, Dhodapkar M et al. Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J. Immunother.28(5), 505–516 (2005).
  • Palucka AK, Dhodapkar MV, Paczesny S et al. Single injection of CD34+ progenitor-derived dendritic cell vaccine can lead to induction of T-cell immunity in patients with stage IV melanoma. J. Immunother.26(5), 432–439 (2003).
  • Pulendran B, Banchereau J, Burkeholder S et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol.165(1), 566–572 (2000).
  • Mosca PJ, Hobeika AC, Colling K et al. Multiple signals are required for maturation of human dendritic cells mobilized in vivo with Flt3 ligand. J. Leukoc. Biol.72(3), 546–553 (2002).
  • Jefford M, Schnurr M, Toy T et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood102(5), 1753–1763 (2003).
  • Davis ID, Chen Q, Morris L et al. Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J. Immunother.29(5), 499–511 (2006).
  • Higano CS, Vogelzang NJ, Sosman JA, Feng A, Caron D, Small EJ. Safety and biological activity of repeated doses of recombinant human Flt3 ligand in patients with bone scan-negative hormone-refractory prostate cancer. Clin. Cancer Res.10(4), 1219–1225 (2004).
  • Marroquin CE, Westwood JA, Lapointe R et al. Mobilization of dendritic cell precursors in patients with cancer by Flt3 ligand allows the generation of higher yields of cultured dendritic cells. J. Immunother.25(3), 278–288 (2002).
  • Chen W, Chan AS, Dawson AJ, Liang X, Blazar BR, Miller JS. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function. Biol. Blood Marrow Transplant,11(1), 23–34 (2005).
  • Morse MA, Nair S, Fernandez-Casal M et al. Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer. J. Clin. Oncol.18(23), 3883–3893 (2000).
  • Siena S, Di Nicola M, Bregni M et al. Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp. Hematol.23(14), 1463–1471 (1995).
  • Zheng Z, Takahashi M, Narita M et al. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte–macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. J. Hematother. Stem Cell Res.9(4), 453–464 (2000).
  • Crespo I, Paiva A, Couceiro A, Pimentel P, Orfao A, Regateiro F. Immunophenotypic and functional characterization of cord blood dendritic cells. Stem Cells Dev.13(1), 63–70 (2004).
  • Kobari L, Giarratana MC, Gluckman JC, Douay L, Rosenzwajg M. Ex vivo expansion does not alter the capacity of umbilical cord blood CD34+ cells to generate functional T lymphocytes and dendritic cells. Stem Cells24(9), 2150–2157 (2006).
  • Joshi SS, Vu UE, Lovgren TR et al. Comparison of phenotypic and functional dendritic cells derived from human umbilical cord blood and peripheral blood mononuclear cells. J. Hematother. Stem Cell Res.11(2), 337–347 (2002).
  • Zhang JK, Li J, Chen HB, Sun JL, Qu YJ, Lu JJ. Antitumor activities of human dendritic cells derived from peripheral and cord blood. World J. Gastroenterol.8(1), 87–90 (2002).
  • Wang P, Munger CM, Joshi AD, Pirruccello SJ, Joshi SS. Cytotoxicity of cord blood derived Her2/neu-specific cytotoxic T lymphocytes against human breast cancer in vitro and in vivo. Breast Cancer Res. Treat.83(1), 15–23 (2004).
  • Guo G, Chen S, Zhang J et al. Antitumor activity of a fusion of esophageal carcinoma cells with dendritic cells derived from cord blood. Vaccine23(45), 5225–5230 (2005).
  • Temme A, Morgenroth A, Schmitz M et al. Efficient transduction and long-term retroviral expression of the melanoma-associated tumor antigen tyrosinase in CD34(+) cord blood-derived dendritic cells. Gene Ther.9(22), 1551–1560 (2002).
  • Enomoto M, Nagayama H, Sato K, Xu Y, Asano S, Takahashi TA. In vitro generation of dendritic cells derived from cryopreserved CD34+ cells mobilized into peripheral blood in lymphoma patients. Cytotherapy2(2), 95–104 (2000).
  • Sato K, Nagayama H, Takahashi TA. Generation of dendritic cells from fresh and frozen cord blood CD34+ cells. Cryobiology,37(4), 362–371 (1998).
  • Xu RL, Tang Y, Ogburn PL et al. Implication of delayed TNF-α exposure on dendritic cell maturation and expansion from cryopreserved cord blood CD34+ hematopoietic progenitors. J. Immunol. Methods,293(1–2), 169–182 (2004).
  • Hsu AK, Kerr BM, Jones KL, Lock RB, Hart DN, Rice AM. RNA loading of leukemic antigens into cord blood-derived dendritic cells for immunotherapy. Biol. Blood Marrow Transplant.12(8), 855–867 (2006).
  • Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J. Drug Target11(8–10), 495–507 (2003).
  • Lopez JA, Bioley G, Turtle CJ et al. Single step enrichment of blood dendritic cells by positive immunoselection. J. Immunol. Methods274(1–2), 47–61 (2003).
  • Radford KJ, Turtle CJ, Kassianos AJ, Hart DN. CD11c+ blood dendritic cells induce antigen-specific cytotoxic T lymphocytes with similar efficiency compared to monocyte-derived dendritic cells despite higher levels of MHC class I expression. J. Immunother. (1997), 29(6), 596–605 (2006).
  • Dhodapkar MV, Steinman RM, Sapp M et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest.104(2), 173–180 (1999).
  • Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer93(2), 243–251 (2001).
  • Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193(2), 233–238 (2001).
  • Jonuleit H, Kuhn U, Muller G et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol.27(12), 3135–3142 (1997).
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q et al. α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res.64(17), 5934–5937 (2004).
  • Zobywalski A, Javorovic M, Frankenberger B et al. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J. Transl. Med.5, 18 (2007).
  • Fay JW, Palucka AK, Paczesny S et al. Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother.55(10), 1209–1218 (2006).
  • Ridolfi R, Petrini M, Fiammenghi L et al. Improved overall survival in dendritic cell vaccination-induced immunoreactive subgroup of advanced melanoma patients. J. Transl. Med.4, 36 (2006).
  • Ueda Y, Shimizu K, Itoh T et al. Induction of peptide-specific immune response in patients with primary malignant melanoma of the esophagus after immunotherapy using dendritic cells pulsed with MAGE peptides. Jpn J. Clin. Oncol.37(2), 140–145 (2007).
  • Schadendorf D, Ugurel S, Schuler-Thurner B et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol.17(4), 563–570 (2006).
  • Danson S, Lorigan P. Melanoma vaccines–they should work. Ann. Oncol.17(4), 539–541 (2006).
  • Tuettenberg A, Becker C, Huter E, Knop J, Enk AH, Jonuleit H. Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients. Int. J. Cancer118(10), 2617–2627 (2006).
  • Fuessel S, Meye A, Schmitz M et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a Phase I clinical trial. Prostate66(8), 811–821 (2006).
  • Lin AM, Hershberg RM, Small EJ. Immunotherapy for prostate cancer using prostatic acid phosphatase loaded antigen presenting cells. Urol. Oncol.24(5), 434–441 (2006).
  • Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Urol. Oncol.107(1), 67–74 (2006).
  • Small EJ, Schellhammer PF, Higano CS et al. Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol.24(19), 3089–3094 (2006).
  • Svane IM, Pedersen AE, Johansen JS et al. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol. Immunother. (2007).
  • Westermann J, Kopp J, van Lessen A et al. Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl+ chronic myeloid leukaemia. Br. J. Haematol.137(4), 297–306 (2007).
  • Roddie H, Klammer M, Thomas C et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br. J. Haematol.133(2), 152–157 (2006).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res.11(15), 5515–5525 (2005).
  • Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin. Cancer Res.11(11), 4160–4167 (2005).
  • Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J. Immunother.27(6), 452–459 (2004).
  • Saikali S, Avril T, Collet B et al. Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy. J. Neurooncol.81(2), 139–148 (2007).
  • Zhang JG, Eguchi J, Kruse CA et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin. Cancer Res.13(2 Pt 1), 566–575 (2007).
  • Berntsen A, Geertsen PF, Svane IM. Therapeutic dendritic cell vaccination of patients with renal cell carcinoma. Eur. Urol.50(1), 34–43 (2006).
  • Wierecky J, Muller MR, Wirths S et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res.66(11), 5910–5918 (2006).
  • Tamir A, Basagila E, Kagahzian A et al. Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. Cancer Immunol. Immunother. (2007).
  • Loveland BE, Zhao A, White S et al. Mannan-MUC1-pulsed dendritic cell immunotherapy: a Phase I trial in patients with adenocarcinoma. Clin. Cancer Res.12(3 Pt 1), 869–877 (2006).
  • Lee JR, Shin JH, Park JH, Song SU, Choi GS. Combined treatment with intratumoral injection of dendritic cells and topical application of imiquimod for murine melanoma. Clin. Exp. Dermatol. (2007).
  • Hahn T, Alvarez I, Kobie JJ et al. Short-term dietary administration of celecoxib enhances the efficacy of tumor lysate-pulsed dendritic cell vaccines in treating murine breast cancer. Int. J. Cancer118(9), 2220–2231 (2006).
  • Hou DY, Muller AJ, Sharma MD et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res.67(2), 792–801 (2007).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115(12), 3623–3633 (2005).
  • Yasuda T, Kamigaki T, Nakamura T et al. Dendritic cell-tumor cell hybrids enhance the induction of cytotoxic T lymphocytes against murine colon cancer: a comparative analysis of antigen loading methods for the vaccination of immunotherapeutic dendritic cells. Oncol. Rep.16(6), 1317–1324 (2006).
  • Chan T, Sami A, El-Gayed A, Guo X, Xiang J. HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Ther.13(19), 1391–1402 (2006).
  • Oh ST, Kim CH, Park MY et al. Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide. Vaccine24(15), 2860–2868 (2006).
  • Steitz J, Tormo D, Schweichel D, Tuting T. Comparison of recombinant adenovirus and synthetic peptide for DC-based melanoma vaccination. Cancer Gene Ther.13(3), 318–325 (2006).
  • Metharom P, Ellem KA, Wei MQ. Gene transfer to dendritic cells induced a protective immunity against melanoma. Cell Mol. Immunol.2(4), 281–288 (2005).
  • Nakamura M, Iwahashi M, Nakamori M et al. Dendritic cells transduced with tumor-associated antigen gene elicit potent therapeutic antitumor immunity: comparison with immunodominant peptide-pulsed DCs. Oncology68(2–3), 163–170 (2005).

Websites

  • Mater medical research institute www.mmri.mater.org.au/
  • Sabine vaccine consortium www.sabin.org/programs/cvc/index.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.