271
Views
44
CrossRef citations to date
0
Altmetric
Review

Immunostimulatory DNA as a vaccine adjuvant

, , , &
Pages 747-759 | Published online: 09 Jan 2014

References

  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol.7(3), 179–190 (2007).
  • Boonstra A, Rajsbaum R, Holman M et al. Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. J. Immunol.177(11), 7551–7558 (2006).
  • Hornung V, Rothenfusser S, Britsch S et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.168(9), 4531–4537 (2002).
  • Kadowaki N, Ho S, Antonenko S et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194(6), 863–869 (2001).
  • Latz E, Schoenemeyer A, Visintin A et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol.5(2), 190–198 (2004).
  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med.198(3), 513–520 (2003).
  • Krug A, French AR, Barchet W et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity21(1), 107–119 (2004).
  • Mogensen TH, Paludan SR, Kilian M, Ostergaard L. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J. Leukoc. Biol.80(2), 267–277 (2006).
  • KalisC, Gumenscheimer M, Freudenberg N et al. Requirement for TLR9 in the immunomodulatory activity of Propionibacterium acnes. J. Immunol.174(7), 4295–4300 (2005).
  • von Meyenn F, Schaefer M, Weighardt H et al. Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guerin by Flt3-ligand generated dendritic cells. Immunobiology211(6–8), 557–565 (2006).
  • Zelenay S, Elias F, Flo J. Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotides. Eur. J. Immunol.33(5), 1382–1392 (2003).
  • Verthelyi D, Ishii KJ, Gursel M, Takeshita F, Klinman DM. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J. Immunol.166(4), 2372–2377 (2001).
  • Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol.164(2), 944–953 (2000).
  • Gursel M, Verthelyi D, Gursel I, Ishii KJ, Klinman DM. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol.71(5), 813–820 (2002).
  • Wagner M, Poeck H, Jahrsdoerfer B et al. IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J. Immunol.172(2), 954–963 (2004).
  • Vollmer J, Weeratna R, Payette P et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol.34(1), 251–262 (2004).
  • Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl Acad. Sci. USA96(16), 9305–9310 (1999).
  • Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol.31(11), 3388–3393 (2001).
  • Kerkmann M, Rothenfusser S, Hornung V et al. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol.170(9), 4465–4474 (2003).
  • Ashkar AA, Rosenthal KL. Toll-like receptor 9, CpG DNA and innate immunity. Curr. Mol. Med.2(6), 545–556 (2002).
  • Duramad O, Fearon KL, Chan JH et al. IL-10 regulates plasmacytoid dendritic cell response to CpG-Containing immunostimulatory sequences. Blood102(13), 4487–4492 (2003).
  • Maurer T, Heit A, Hochrein H et al. CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol.32(8), 2356–2364 (2002).
  • Kerkmann M, Costa LT, Richter C et al. Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-a induction by CpG-A in plasmacytoid dendritic cells. J. Biol. Chem.280(9), 8086–8093 (2005).
  • Krug A, Rothenfusser S, Hornung V et al. Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur. J. Immunol.31(7), 1254–2163 (2001).
  • Abel K, Wang Y, Fritts L et al. Deoxycytidyl-deoxyguanosine oligonucleotide classes A, B, and C induce distinct cytokine gene expression patterns in rhesus monkey peripheral blood mononuclear cells and distinct a interferon responses in TLR9-expressing rhesus monkey plasmacytoid dendritic cells. Clin. Diagn. Lab. Immunol.12(5), 606–621 (2005).
  • Asselin-Paturel C, Boonstra A, Dalod M et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol.2(12), 1144–1150 (2001).
  • Krug A, Rothenfusser S, Selinger S et al. CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J. Immunol.170(7), 3468–3477 (2003).
  • Marshall JD, Fearon K, Abbate C et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol.73(6), 781–792 (2003).
  • Rothenfusser S, Tuma E, Endres S, Hartmann G. Plasmacytoid dendritic cells: the key to CpG. Hum. Immunol.63(12), 1111–1119 (2002).
  • Yamamoto S, Yamamoto T, Iho S, Tokunaga T. Activation of NK cell (human and mouse) by immunostimulatory DNA sequence. Springer Semin. Immunopathol.22(1–2), 35–43 (2000).
  • Hartmann G, Battiany J, Poeck H et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol.33(6), 1633–1641 (2003).
  • Jurk M, Schulte B, Kritzler A et al. C-class CpG ODN: sequence requirements and characterization of immunostimulatory activities on mRNA level. Immunobiology209(1–2), 141–154 (2004).
  • Marshall JD, Hessel EM, Gregorio J et al. Novel chimeric immunomodulatory compounds containing short CpG oligodeoxyribonucleotides have differential activities in human cells. Nucleic Acids Res.31(17), 5122–5133 (2003).
  • Yu D, Kandimalla ER, Bhagat L et al. ‘Immunomers’ – novel 3´-3´-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res.30(20), 4460–4469 (2002).
  • Yu D, Zhu FG, Bhagat L et al. Potent CpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochem. Biophys. Res. Commun.297(1), 83–90 (2002).
  • Elias F, Flo J, Lopez RA et al. Strong cytosine-guanosine-independent immunostimulation in humans and other primates by synthetic oligodeoxynucleotides with PyNTTTTGT motifs. J. Immunol.171(7), 3697–3704 (2003).
  • Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE. Activation of human B cells by phosphorothioate oligodeoxynucleotides. J. Clin. Invest.98(5), 1119–1129 (1996).
  • Vollmer J, Janosch A, Laucht M et al. Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev.12(3), 165–175 (2002).
  • Cheney IW, Lai VC, Zhong W et al. Comparative analysis of anti-hepatitis C virus activity and gene expression mediated by α, β, and γ interferons. J. Virol.76(21), 11148–11154 (2002).
  • Noisakran S, Carr DJ. Type I interferons and herpes simplex virus infection: a naked DNA approach as a therapeutic option? Immunol. Res.24(1), 1–11 (2001).
  • Sen E, McLaughlin-Drubin M, Meyers C. Efficacy of two commercial preparations of interferon-α on human papillomavirus replication. Anticancer Res.25(2A), 1091–1100 (2005).
  • Marshall JD, Higgins D, Abbate C et al. Polymyxin B enhances ISS-mediated immune responses across multiple species. Cell. Immunol.229(2), 93–105 (2004).
  • Pedersen GM, Johansen A, Olsen RL, Jorgensen JB. Stimulation of type I IFN activity in Atlantic salmon (Salmo salar L.) leukocytes: synergistic effects of cationic proteins and CpG ODN. Fish Shellfish Immunol.20(4), 503–518 (2006).
  • Kerkmann M, Lochmann D, Weyermann J et al. Immunostimulatory properties of CpG-oligonucleotides are enhanced by the use of protamine nanoparticles. Oligonucleotides16(4), 313–322 (2006).
  • Scheel B, Teufel R, Probst J et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol.35(5), 1557–1566 (2005).
  • Riedl P, Buschle M, Reimann J, Schirmbeck R. Binding immune-stimulating oligonucleotides to cationic peptides from viral core antigen enhances their potency as adjuvants. Eur. J. Immunol.32(6), 1709–1716 (2002).
  • Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release85(1–3), 247–262 (2002).
  • Fearon K, Marshall JD, Abbate C et al. A minimal human immunostimulatory CpG motif that potently induces IFN-γ and IFN-α production. Eur. J. Immunol.33(8), 2114–2122 (2003).
  • Singh M, Ott G, Kazzaz J et al. Cationic microparticles are an effective delivery system for immune stimulatory cpG DNA. Pharm. Res.18(10), 1476–1479 (2001).
  • Rutz M, Metzger J, Gellert T et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol.34(9), 2541–2550 (2004).
  • Guiducci C, Ott G, Chan JH et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med.203(8), 1999–2008 (2006).
  • Xiao Y, Aldaz-Carroll L, Ortiz AM et al. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine25(7), 1214–1224 (2007).
  • Verthelyi D, Wang VW, Lifson JD, Klinman DM. CpG oligodeoxynucleotides improve the response to hepatitis B immunization in healthy and SIV-infected rhesus macaques. AIDS18(7), 1003–1008 (2004).
  • Chu JH, Chiang CC, Ng ML. Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J. Immunol.178(5), 2699–2705 (2007).
  • Sen G, Chen Q, Snapper CM. Immunization of aged mice with a pneumococcal conjugate vaccine combined with an unmethylated CpG-Containing oligodeoxynucleotide restores defective immunoglobulin G antipolysaccharide responses and specific CD4+-T-cell priming to young adult levels. Infect. Immun.74(4), 2177–2186 (2006).
  • Gu M, Hine PM, James Jackson W, Giri L, Nabors GS. Increased potency of BioThrax anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109. Vaccine25(3), 526–534 (2007).
  • Amaral CC, Garcia IP, Fernandes GF et al. Adjuvant effect of synthetic oligodeoxyribonucleotides (CpG-ODN) from the Paracoccidioides brasiliensis gp43 gene on the Th2-Th1 immunomodulation of experimental paracoccidioidomycosis. Scand. J. Immunol.62(4), 325–333 (2005).
  • Bozza S, Gaziano R, Lipford GB et al. Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect.4(13), 1281–1290 (2002).
  • Mukherjee P, Pathangey LB, Bradley JB et al. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine25(9), 1607–1618 (2007).
  • Higgins D, Rodriguez R, Milley R et al. Modulation of immunogenicity and allergenicity by controlling the number of immunostimulatory oligonucleotides linked to Amb a 1. J. Allergy Clin. Immunol.118, 504–510 (2006).
  • Mo JH, Park SW, Rhee CS et al. Suppression of allergic response by CpG motif oligodeoxynucleotide-house-dust mite conjugate in animal model of allergic rhinitis. Am. J. Rhinol.20(2), 212–218 (2006).
  • Pons L, Burks W. Novel treatments for food allergy. Expert Opin. Investig. Drugs14(7), 829–834 (2005).
  • Carrington AC, Secombes CJ. A review of CpGs and their relevance to aquaculture. Vet. Immunol. Immunopathol.112(3–4), 87–101 (2006).
  • Mutwiri G, Pontarollo R, Babiuk S et al. Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Vet. Immunol. Immunopathol.91(2), 89–103 (2003).
  • Rankin R, Pontarollo R, Ioannou X et al. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev.11(5), 333–340 (2001).
  • Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines2(2), 305–315 (2003).
  • McCluskie MJ, Krieg AM. Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr. Top. Microbiol. Immunol.311, 155–178 (2006).
  • Daubenberger CA. TLR9 agonists as adjuvants for prophylactic and therapeutic vaccines. Curr. Opin. Mol. Ther.9(1), 45–52 (2007).
  • Davis HL, Suparto, II, Weeratna RR et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine18(18), 1920–1924 (2000).
  • Siegrist CA. Neonatal and early life vaccinology. Vaccine19(25–26), 3331–3346 (2001).
  • Ginaldi L, Loreto MF, Corsi MP, Modesti M, De Martinis M. Immunosenescence and infectious diseases. Microbes Infect.3(10), 851–857 (2001).
  • Alignani D, Maletto B, Liscovsky M et al. Orally administered OVA/CpG-ODN induces specific mucosal and systemic immune response in young and aged mice. J. Leukoc. Biol.77, 898–905 (2005).
  • Brazolot Millan CL, Weeratna R, Krieg AM, Siegrist CA, Davis HL. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc. Natl Acad. Sci. USA95(26), 15553–15558 (1998).
  • Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol. Med. Microbiol.32(1), 65–71 (2001).
  • Shirota H, Sano K, Kikuchi T, Tamura G, Shirato K. Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligodeoxynucleotides as a novel antigen-specific immunomodulator. J. Immunol.164(11), 5575–5582 (2000).
  • Hayashi M, Satou E, Ueki R et al. Resistance to influenza A virus infection by antigen-conjugated CpG oligonucleotides a novel antigen-specific immunomodulator. Biochem. Biophys. Res. Commun.329(1), 230–236 (2005).
  • Heit A, Schmitz F, O’Keeffe M et al. Protective CD8 T cell immunity triggered by CpG–protein conjugates competes with the efficacy of live vaccines. J. Immunol.174(7), 4373–4380 (2005).
  • Standley SM, Mende I, Goh SL et al. Incorporation of CpG oligonucleotide ligand into protein-loaded particle vaccines promotes antigen-specific CD8 T-cell immunity. Bioconjug. Chem.18(1), 77–83 (2007).
  • Alcon V, Baca-Estrada M, Vega-Lopez M et al. Mucosal delivery of bacterial antigens and CpG oligonucleotides formulated in biphasic lipid vesicles in pigs. AAPS J.7(3), E566–E571 (2005).
  • Engler OB, Schwendener RA, Dai WJ et al. A liposomal peptide vaccine inducing CD8+ T cells in HLA-A2.1 transgenic mice, which recognise human cells encoding hepatitis C virus (HCV) proteins. Vaccine23(1), 58–68 (2004).
  • Jerome V, Graser A, Müller R, Kontermann RE, Konur A. Cytotoxic T lymphocytes responding to low dose TRP2 antigen are induced against B16 melanoma by liposome-encapsulated TRP2 peptide and CpG DNA adjuvant. J. Immunother.29(3), 294–305 (2006).
  • Gram GJ, Fomsgaard A, Thorn M, Madsen SM, Glenting J. Immunological analysis of a Lactococcus lactis-based DNA vaccine expressing HIV gp120. Genet. Vaccines Ther.5, 3 (2007).
  • Tighe H, Takabayashi K, Schwartz D et al. Conjugation of protein to immunostimulatory DNA results in a rapid, long-lasting and potent induction of cell-mediated and humoral immunity. Eur. J. Immunol.30(7), 1939–1947 (2000).
  • Tighe H, Takabayashi K, Schwartz D et al. Conjugation of immunostimulatory DNA to the short ragweed allergen Amb a 1 enhances its immunogenicity and reduces its allergenicity. J. Allergy Clin. Immunol.106(1 Pt 1), 124–134 (2000).
  • Davis HL, Weeratna R, Waldschmidt TJ et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol.160(2), 870–876 (1998).
  • Giuliani MM, Adu-Bobie J, Comanducci M et al. A universal vaccine for serogroup B meningococcus. Proc. Natl Acad. Sci. USA103(29), 10834–10839 (2006).
  • Mansour M, Pohajdak B, Kast WM et al. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax®. J. Transl. Med.5, 20 (2007).
  • Jeamwattanalert P, Mahakunkijcharoen Y, Kittigul L et al. Long-lasting protective immune response to the 19-kilodalton carboxy-terminal fragment of Plasmodium yoelii merozoite surface protein 1 in mice. Clin. Vaccine Immunol.14(4), 342–347 (2007).
  • Vajdy M, Selby M, Medina-Selby A et al. Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. J. Gen. Virol.87(Pt 8), 2253–2262 (2006).
  • Xie H, Gursel I, Ivins BE et al. CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect. Immun.73(2), 828–833 (2005).
  • de Jong S, Chikh G, Sekirov L et al. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol. Immunother.56(8), 1251–1264 (2007).
  • Klinman DM. CpG oligonucleotides accelerate and boost the immune response elicited by AVA, the licensed anthrax vaccine. Expert Rev. Vaccines5(3), 365–369 (2006).
  • Wille-Reece U, Flynn BJ, Lore K et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime–boost immunization in nonhuman primates. J. Exp. Med.203(5), 1249–1258 (2006).
  • Cong Y, Jupelli M, Guentzel MN et al. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine25(19), 3773–3780 (2007).
  • Jiang JQ, Patrick A, Moss RB, Rosenthal KL. CD8+ T-cell-mediated cross-clade protection in the genital tract following intranasal immunization with inactivated human immunodeficiency virus antigen plus CpG oligodeoxynucleotides. J. Virol.79(1), 393–400 (2005).
  • Zhang L, Tian X, Zhou F. CpG oligodeoxynucleotides augment the immune responses of piglets to swine Pasteurella multocida living vaccine in vivo. Res. Vet. Sci.83(2), 171–181(2007).
  • Belyakov IM, Isakov D, Zhu Q et al. Enhancement of CD8+T cell immunity in the lung by CpG oligodeoxynucleotides increases protective efficacy of a modified vaccinia Ankara vaccine against lethal poxvirus infection even in a CD4-deficient host. J. Immunol.177(9), 6336–6343 (2006).
  • Santeliz JV, Van Nest G, Traquina P, Larsen E, Wills-Karp M. Amb a 1-linked CpG oligodeoxynucleotides reverse established airway hyperresponsiveness in a murine model of asthma. J. Allergy Clin. Immunol.109, 455–462 (2002).
  • Henry SP, Bolte H, Auletta C, Kornbrust DJ. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a four-week study in cynomolgus monkeys. Toxicology120(2), 145–155 (1997).
  • Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta1489(1), 69–84 (1999).
  • Levin AA, Monteith DK, Leeds JM et al. Toxicity of oligonucleotide therapeutic agents. In: Handbook of Experimental Pharmacology. Crooke ST (Ed.). Springer–Verlag, Berlin, Germany 131, 169–215 (1998).
  • Monteith DK, Henry SP, Howard RB et al. Immune stimulation – a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des.12(5), 421–432 (1997).
  • Monteith DK, Levin AA. Synthetic oligonucleotides: the development of antisense therapeutics. Toxicol. Pathol.27(1), 8–13 (1999).
  • Thawani N, Tam M, Chang KH, Stevenson MM. Interferon-γ mediates suppression of erythropoiesis but not reduced red cell survival following CpG-ODN administration in vivo. Exp. Hematol.34(11), 1451–1461 (2006).
  • Kozak W, Wrotek S, Kozak A. Pyrogenicity of CpG-DNA in mice: role of interleukin-6, cyclooxygenases, and nuclear factor-κB. Am. J. Physiol. Regul. Integr. Comp. Physiol.290(4), R871–R880 (2006).
  • Nichani AK, Dar MA, Krieg AM et al. Systemic innate immune responses following intrapulmonary delivery of CpG oligodeoxynucleotides in sheep. Vet. Immunol. Immunopathol.115(3–4), 357–368 (2007).
  • Nichani AK, Mena A, Popowych Y et al.In vivo immunostimulatory effects of CpG oligodeoxynucleotide in cattle and sheep. Vet. Immunol. Immunopathol.98(1–2), 17–29 (2004).
  • Kodama S, Abe N, Hirano T, Suzuki M. Safety and efficacy of nasal application of CpG oligodeoxynucleotide as a mucosal adjuvant. Laryngoscope116(2), 331–335 (2006).
  • Ioannou XP, Gomis SM, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. Safety and efficacy of CpG-containing oligodeoxynucleotides as immunological adjuvants in rabbits. Vaccine21(27–30), 4368–4372 (2003).
  • Vleugels B, Ververken C, Goddeeris BM. Stimulatory effect of CpG sequences on humoral response in chickens. Poult. Sci.81(9), 1317–1321 (2002).
  • Heikenwalder M, Polymenidou M, Junt T et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med.10(2), 187–192 (2004).
  • Prater MR, Johnson VJ, Germolec DR, Luster MI, Holladay SD. Maternal treatment with a high dose of CpG ODN during gestation alters fetal craniofacial and distal limb development in C57BL/6 mice. Vaccine24(3), 263–271 (2006).
  • Halperin SA, Van Nest G, Smith B et al. A Phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine21(19–20), 2461–2467 (2003).
  • Halperin S, Dobson S, McNeil S et al. Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine24, 20–26 (2006).
  • Cooper CL, Davis HL, Morris ML et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind Phase I/II study. J. Clin. Immunol.24(6), 693–701 (2004).
  • Siegrist CA, Pihlgren M, Tougne C et al. Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response. Vaccine23(5), 615–622 (2004).
  • Cooper CL, Davis HL, Angel JB et al. CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. AIDS19(14), 1473–1479 (2005).
  • Cooper CL, Davis HL, Morris ML et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine22(23–24), 3136–3143 (2004).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Appay V, Jandus C, Voelter V et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol.177(3), 1670–1678 (2006).
  • Valmori D, Souleimanian NE, Tosello V et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc. Natl Acad. Sci. USA104(21), 8947–8952 (2007).
  • Tulic MK, Fiset PO, Christodoulopoulos P et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol.113(2), 235–241 (2004).
  • Simons FE, Shikishima Y, Van Nest G, Eiden JJ, HayGlass KT. Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J. Allergy Clin. Immunol.113(6), 1144–1151 (2004).
  • Creticos PS, Schroeder JT, Hamilton RG et al. Immunotherapy with a ragweed–Toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med.355(14), 1445–1455 (2006).

Websites

  • Enhancement of the anthrax AVA vaccine with CpG ODN http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA455514
  • Safety of and immune response to a malaria vaccine (MPS1 42-C1) with or without CPG 7909 adjuvant http://clinicaltrials.gov/ct/show/NCT00320658?order=6
  • Phase I study of AMA1-C1/Alhydrogel®™ + CPG 7909 malaria vaccine http://clinicaltrials.gov/ct/show/NCT00427167?order=1
  • Phase I study of safety and immunogenicity of AMA1-C1Alhydrogel + CPG 7909 vaccine for malaria http://clinicaltrials.gov/ct/show/NCT00414336?order=5
  • Immunization with the MAGE-3.A1peptide mixed with the adjuvant CpG 7909 in patients with metastatic melanoma http://clinicaltrials.gov/ct/show/NCT00145145?order=4
  • Vaccine therapy in treating patients with recurent Stage III or Stage IV mealnoma that cannot be removed by surgery http://clinicaltrials.gov/ct/show/NCT00471471?order=9
  • Immunotherapy of HLA-A2 positive Stage III/IV melanoma patients http://clinicaltrials.gov/ct/show/NCT00112229?order=10
  • Cytos biotechnology – clinical trials www.cytos.com/default3.asp?text=products_trials.asp&bot=bot_products.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.