1,052
Views
210
CrossRef citations to date
0
Altmetric
Review

Nanoparticles and microparticles as vaccine-delivery systems

, &
Pages 797-808 | Published online: 09 Jan 2014

References

  • Ramon G. Sur la toxine st sur l’anatoxine diptheriques. Ann. Inst. Pasteur38, 1–10 (1924).
  • Vogel FR, Pruett MF. A compendium of vaccine adjuvants and excipients. In: Vaccine Design. The Subunit and Adjuvant Approach. Newman MJ (Ed.). Plenum Press, NY, USA 141–228 (1995).
  • Mesa C, Fernandez LE. Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell. Biol.82(6), 644–650 (2004).
  • Del Giudice G, Fragapane E, Bugarini R et al. Vaccines with the MF59 adjuvant do not stimulate antibody responses against squalene. Clin. Vaccine Immunol.13(9), 1010–1013 (2006).
  • Gupta RK. Aluminum compounds as vaccine adjuvants. Adv. Drug Del. Rev.32, 155–172 (1998).
  • Lindblad EB. Aluminium compounds for use in vaccines. Immunol. Cell. Biol.82(5), 497–505 (2004).
  • Singh M, Ugozzoli M, Kazzaz J et al. A preliminary evaluation of alternative adjuvants to alum using a range of established and new generation vaccine antigens. Vaccine24(10), 1680–1686 (2006).
  • Relyveld EH, Bizzini B, Gupta RK. Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine16(9–10), 1016–1023 (1998).
  • Edelman R. Adjuvants for the future. New Generation Vaccines. Cobson GS (Ed.). Marcel Dekker Inc., NY, USA 173–192 (1997).
  • Zinkernagel RM, Ehl S, Aichele P et al. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev.156, 199–209 (1997).
  • O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines2(2), 269–283 (2003).
  • Fearon DT. Seeking wisdom in innate immunity. Nature388(6640), 323–324 (1997).
  • Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science272(5258), 50–53 (1996).
  • Yip HC, Karulin AY, Tary-Lehmann M et al. Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. J. Immunol.162(7), 3942–3949 (1999).
  • Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv. Drug Deliv. Rev.57(3), 391–410 (2005).
  • Cui Z, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit. Rev. Ther. Drug Carrier Syst.20(2–3), 103–137 (2003).
  • Wendorf J, Singh M, Chesko J et al. A practical approach to the use of nanoparticles for vaccine delivery. J. Pharm. Sci.95(12), 2738–2750 (2006).
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55(3), 329–347 (2003).
  • Kreuter J. Nanoparticles as adjuvants for vaccines. Pharm. Biotechnol.6, 463–472 (1995).
  • Jung T, Kamm W, Breitenbach A et al. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res.18(3), 352–360 (2001).
  • Singh M, Briones M, Ott G, O’Hagan D. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl Acad. Sci. USA97(2), 811–816 (2000).
  • Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control Release85(1–3), 247–262 (2002).
  • Kreuter J, Speiser PP. New adjuvants on a polymethylmethacrylate base. Infect. Immun.13(1), 204–210 (1976).
  • Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun.59(9), 2978–2986 (1991).
  • O’Hagan DT, Jeffery H, Davis SS. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine11(9), 965–969 (1993).
  • Nakaoka R, Inoue Y, Tabata Y, Ikada Y. Size effect on the antibody production induced by biodegradable microspheres containing antigen. Vaccine14(13), 1251–1256 (1996).
  • Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine14(17–18), 1677–1685 (1996).
  • Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine21(1–2), 67–77 (2002).
  • Vila A, Sanchez A, Evora C et al. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J. Aerosol Med.17(2), 174–185 (2004).
  • Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol. Bioeng.96(2), 203–209 (2007).
  • Peltonen L, Koistinen P, Karjalainen M, Hakkinen A, Hirvonen J. The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(L)lactide. AAPS Pharm. Sci. Tech.3(4), E32 (2002).
  • Wehrle P, Magenheim B, Benita S. The influence of process parameters on the PLA nanoparticle size distribution, evaluated by means of factorial design. Eur. J. Pharm. Biopharm.41(1), 19–26 (1995).
  • Scholes PD, Coombes AGA, Illum L et al. The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery. J. Control Release25(1–2), 145–153 (1993).
  • Blanco MD, Alonso MJ. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm.43(3), 287–294 (1997).
  • Nguyen XC, Herberger JD, Burke PA. Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharm. Res.21(3), 507–514 (2004).
  • Thomasin C, Merkle HP, Gander B. Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 2. Parameters determining microsphere formation. J. Pharm. Sci.87(3), 269–275 (1998).
  • Thomasin C, Ho NT, Merkle HP, Gander B. Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations. J. Pharm. Sci.87(3), 259–268 (1998).
  • Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Deliv. Rev.57(3), 357–376 (2005).
  • Cleland JL, Jones AJ. Stable formulations of recombinant human growth hormone and interferon-γ for microencapsulation in biodegradable microspheres. Pharm. Res.13(10), 1464–1475 (1996).
  • Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control. Release67(2–3), 347–356 (2000).
  • Singh M, Kazzaz J, Chesko J et al. Anionic microparticles are a potent delivery system for recombinant antigens from Neisseria meningitidis serotype B. J. Pharm. Sci.93(2), 273–282 (2004).
  • Singh M, Kazzaz J, Ugozzoli M et al. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr. Drug Deliv.3, 115–120 (2006).
  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm.55(1), R1–R4 (1989).
  • Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with DL-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control. Release25(1–2), 89–98 (1993).
  • Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J. Pharm. Sci.85(2), 206–213 (1996).
  • Calvo P, RemunanLopez C, VilaJato JL, Alonso MJ. Development of positively charged colloidal drug carriers: chitosan coated polyester nanocapsules and submicron-emulsions. Coll. Polym. Sci.275(1), 46–53 (1997).
  • Jung T, Breitenbach A, Kissel T. Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J. Control. Release67(2–3), 157–169 (2000).
  • O’Hagan DT, Palin KJ, Davis SS. Poly(butyl-2-cyanoacrylate) particles as adjuvants for oral immunization. Vaccine7(3), 213–216 (1989).
  • Chauvierre C, Labarre D, Couvreur P, Vauthier C. Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm. Res.20(11), 1786–1793 (2003).
  • Major M, Prieur E, Tocanne JF, Betbeder D, Sautereau AM. Characterization and phase behaviour of phospholipid bilayers adsorbed on spherical polysaccharidic nanoparticles. Biochim. Biophys. Acta1327(1), 32–40 (1997).
  • Baudner BC, Balland O, Giuliani MM et al. Enhancement of protective efficacy following intranasal immunization with vaccine plus a nontoxic LTK63 mutant delivered with nanoparticles. Infect. Immun.70(9), 4785–4790 (2002).
  • Okada H, Toguchi H. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carrier Syst.12(1), 1–99 (1995).
  • Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol.16(2), 153–157 (1998) [erratum: Nat. Biotechnol.16(5), 478 (1998)].
  • O’Hagan DT, Jeffery H, Roberts MJ, McGee JP, Davis SS. Controlled release microparticles for vaccine development. Vaccine9(10), 768–771 (1991).
  • O’Hagan DT, Rahman D, McGee JP et al. Biodegradable microparticles as controlled release antigen delivery systems. Immunology73(2), 239–242. (1991).
  • Johnson OL, Cleland JL, Lee HJ et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med.2(7), 795–799 (1996).
  • Singh M, Ott G, Kazzaz J et al. Cationic microparticles are an effective delivery system for immune stimulatory cpG DNA. Pharm. Res.18(10), 1476–1479 (2001).
  • Singh M, Chesko J, Kazzaz J et al. Adsorption of a novel recombinant glycoprotein from HIV (Env gp120dV2SF162) to anionic PLG microparticles retains the structural integrity of the protein, while encapsulation in PLG microparticles does not. Pharm. Res.21(12), 2148–2152 (2004).
  • O’Hagan DT, Singh M, Gupta RK. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev.32, 225–246 (1998).
  • Schwendeman SP, Costantino HR, Gupta RK et al. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc. Natl Acad. Sci. USA92(24), 11234–11238 (1995).
  • Johansen P, Gander B, Merkle HP, Sesardic D. Ambiguities in the preclinical quality assessment of microparticulate vaccines. Trends Biotechnol.18(5), 203–211 (2000).
  • Sasiak AB, Bolgiano B, Crane DT et al. Comparison of in vitro and in vivo methods to study stability of PLGA microencapsulated tetanus toxoid vaccines. Vaccine19(7–8), 694–705 (2001).
  • Shi L, Caulfield MJ, Chern RT et al. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres. J. Pharm. Sci.91(4), 1019–1035 (2002).
  • Singh M, Li XM, McGee JP et al. Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine15(5), 475–481 (1997).
  • Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against hepatitis B through incorporation of alum and chitosan. J. Microencapsul.24(6), 539–552 (2007).
  • Men Y, Thomasin C, Merkle HP, Gander B, Corradin G. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine13(7), 683–689. (1995).
  • O’Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. Methods40(1), 10–19 (2006).
  • Preis I, Langer RS. A single-step immunization by sustained antigen release. J. Immunol. Methods28(1–2), 193–197 (1979).
  • Gupta RK, Singh M, O’Hagan DT. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev.32(3), 225–246 (1998).
  • Otten GR, Schaefer M, Doe B et al. Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming–boosting regimen with recombinant proteins. J. Virol.79(13), 8189–8200 (2005).
  • Katare YK, Panda AK, Lalwani K, Haque IU, Ali MM. Potentiation of immune response from polymer-entrapped antigen: toward development of single dose tetanus toxoid vaccine. Drug Deliv.10(4), 231–238 (2003).
  • Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res.21(4), 671–674 (2004).
  • Tabata Y, Ikada Y. Phagocytosis of polymer microspheres by macrophages. Adv. Polymer Sci.94, 107–141 (1990).
  • Thiele L, Rothen-Rutishauser B, Jilek S et al. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release76(1–2), 59–71 (2001).
  • Minigo G, Scholzen A, Tang CK et al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine25(7), 1316–1327 (2007).
  • Gomez S, Gamazo C, San Roman B et al. Development of a novel vaccine delivery system based on Gantrez nanoparticles. J. Nanosci. Nanotechnol.6, 3283–3289 (2006).
  • Arbos P, Arangoa MA, Campanero MA, Irache JM. Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles. Int. J. Pharm.242(1–2), 129–136 (2002).
  • Nixon DF, Hioe C, Chen PD et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine14(16), 1523–1530 (1996).
  • Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev. Vaccines6(3), 401–418 (2007).
  • Brayden DJ, Baird AW. Microparticle vaccine approaches to stimulate mucosal immunisation. Microbes Infect.3(10), 867–876 (2001).
  • Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm. Res.14(3), 259–266 (1997).
  • Vila A, Sanchez A, Janes K et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm.57(1), 123–131 (2004).
  • He Q, Mitchell A, Morcol T, Bell SJ. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin. Diagn. Lab. Immunol.9(5), 1021–1024 (2002).
  • Chen H, Langer R. Oral particulate delivery: status and future trends. Adv. Drug Deliv. Rev.34, 339–350 (1998).
  • des Rieux A, Fievez V, Garinot M, Schneider Y-J, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release116(1), 1–27 (2006).
  • Garinot M, Fievez V, Pourcelle V et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release120(3), 195–204 (2007).
  • Wendorf J, Singh M, O’Hagan DT. Nanoparticles and microparticles as vaccine adjuvants. In: Nanoparticulates as Drug Carriers. Torchilin V (Ed.). Imperial College Press, London, UK, 675 (2006).
  • Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med.5(4), 387–391 (1999).
  • Bivas-Benita M, van Meijgaarden KE, Franken KLMC et al. Pulmonary delivery of chitosan–DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine22(13–14), 1609–1615 (2004).
  • Locher CP, Putnam D, Langer R et al. Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol. Lett.90(2–3), 67–70 (2003).
  • Briones M, Singh M, Ugozzoli M et al. The preparation, characterization, and evaluation of cationic microparticles for DNA vaccine delivery. Pharm. Res.18(5), 709–712 (2001).
  • Tabata Y, Ikada Y. Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microspheres. J. Pharm. Pharmacol.39(9), 698–704. (1987).
  • Puri N, Sinko PJ. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres. II. In vivo investigation. J. Control. Release69(1), 69–80. (2000).
  • Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J. Biomed. Mater. Res.22(10), 837–858. (1988).
  • Sparwasser T, Hultner L, Koch ES et al. Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J. Immunol.162(4), 2368–2374 (1999).
  • Lipford GB, Sparwasser T, Zimmermann S, Heeg K, Wagner H. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J. Immunol.165(3), 1228–1235 (2000).
  • Segal BM, Chang JT, Shevach EM. CpG Oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo. J. Immunol.164(11), 5683–5688 (2000).
  • Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J. Drug Target.11(8), 495–507 (2003).
  • Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(L,-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Presented at: The 1st International Modern Vaccine Adjuvants and Delivery Systems Meeting. Dublin, Ireland, 4–6 June 2003. 22(19), 2406–2412 (2004).
  • Diwan M, Elamanchili P, Cao M, Samuel J. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr. Drug Deliv.1, 405–412 (2004).
  • Masson V, Maurin F, Fessi H, Devissaguet JP. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials18(4), 327–335 (1997).
  • Konan YN, Gurny R, Allemann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int. J. Pharm.233(1–2), 239–252 (2002).
  • Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol.107(1–2), 137–143 (2000).
  • Bisht S, Bhakta G, Mitra S, Maitra A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int. J. Pharm.288(1), 157–168 (2005).
  • Debin A, Kravtzoff R, Santiago JV et al. Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine20(21–22), 2752–2763 (2002).

Patent

  • Fessi H, Puisieux F, Devissaguet JP. Process for the preparation of dispersible colloidal systems of a substance in the form of nanocapsules. European Patent (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.