151
Views
64
CrossRef citations to date
0
Altmetric
Review

Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by Type I and Type II heat-labile enterotoxins

Pages 821-834 | Published online: 09 Jan 2014

References

  • Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with enterotoxins for the generation of secretory immunity or tolerance: applications for oral infections. J. Dent. Res.84(12), 1104–1116 (2005).
  • Arce S, Nawar HF, Russell MW, Connell TD. Differential binding of Escherichia coli enterotoxins LT-IIa and LT-IIb and of cholera toxin elicits differences in apoptosis, proliferation, and activation of lymphoid cells. Infect. Immun.73(5), 2718–2727 (2005).
  • Cheng E, Cardenas-Freytag L, Clements JD. The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine18(1–2), 38–49 (1999).
  • McCluskie MJ, Weeratna RD, Clements JD, Davis HL. Mucosal immunization of mice using CpG DNA and/or mutants of the heat-labile enterotoxin of Escherichia coli as adjuvants. Vaccine19(27), 3759–3768 (2001).
  • Lycke N, Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology59(2), 301–308 (1986).
  • Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine6(3), 269–277 (1988).
  • de Haan L, Verweij WR, Feil IK et al. Mutants of the Escherichia coli heat-labile enterotoxin with reduced ADP-ribosylation activity or no activity retain the immunogenic properties of the native holotoxin. Infect. Immun.64(12), 5413–5416 (1996).
  • de Haan L, Holtrop M, Verweij WR, Agsteribbe E, Wilschut J. Mucosal immunogenicity of the Escherichia coli heat-labile enterotoxin: role of the A subunit. Vaccine14(4), 260–266 (1996).
  • Lycke N, Tsuji T, Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur. J. Immun.22(9), 2277–2281 (1992).
  • Douce G, Turcotte C, Cropley I et al. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc. Natl Acad. Sci. USA92(5), 1644–1648 (1995).
  • Wu HY, Russell MW. Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant. Vaccine16(2–3), 286–292 (1998).
  • Plant A, Williams R, Jackson ME, Williams NA. The B subunit of Escherichia coli heat labile enterotoxin abrogates oral tolerance, promoting predominantly Th2-type immune responses. Eur. J. Immun.33(11), 3186–3195 (2003).
  • Wilson AD, Robinson A, Irons L, Stokes CR. Adjuvant action of cholera toxin and pertussis toxin in the induction of IgA antibody response to orally administered antigen. Vaccine11(2), 113–118 (1993).
  • Wimer-Mackin S, Holmes RK, Wolf AA, Lencer WI, Jobling MG. Characterization of receptor-mediated signal transduction by Escherichia coli type IIa heat-labile enterotoxin in the polarized human intestinal cell line T84. Infect. Immun.69(12), 7205–7212 (2001).
  • Wolf AA, Jobling MG, Wimer-Mackin S et al. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J. Cell Biol.141(4), 917–927 (1998).
  • Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B, Feigenson GW. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc. Natl Acad. Sci. USA102(18), 6320–6325 (2005).
  • Sonnino S, Acquotti D, Riboni L, Giuliani A, Kirschner G, Tettamanti G. New chemical trends in ganglioside research. Chem. Phys. Lipids42(1–3), 3–26 (1986).
  • Levery SB. Glycosphingolipid structural analysis and glycosphingolipidomics. Meth. Enzymol.405, 300–369 (2005).
  • Kniep B, Cinek T, Angelisova P, Horejsi V. Association of the GPI-anchored leucocyte surface glycoproteins with ganglioside GM3. Biochem. Biophys. Res. Commun.203(2), 1069–1075 (1994).
  • Nohara K, Suzuki M, Inagaki F, Sano T, Kaya K. A novel disialoganglioside in rat spleen lymphocytes. J. Biol. Chem.267(21), 14982–14986 (1992).
  • O’Boyle KP, Freeman K, Kalisiak A, Agregado A, Scheinberg DA. Patterns of ganglioside expression in B cell neoplasms. Leuk. Lymphoma21(3–4), 255–266 (1996).
  • Yohe HC, Ye S, Reinhold BB, Reinhold VN. Structural characterization of the disialogangliosides of murine peritoneal macrophages. Glycobiology7(8), 1215–1227 (1997).
  • Kanda N, Watanabe S. Ganglioside GD1a enhances immunoglobulin production by human peripheral blood mononuclear cells. Exp. Hematol.28(6), 672–679 (2000).
  • Ulrich-Bott B, Wiegandt H. Micellar properties of glycosphingolipids in aqueous media. J. Lipid Res.25(11), 1233–1245 (1984).
  • Nagai Y, Iwamori M. Cellular biology of gangliosides. In: Biology of Sialic Acids. Plenum Publishing Co., NY, USA 197–230 (1994).
  • Hakomori S. Structure and function of sphingoglycolipids in transmembrane signalling and cell–cell interactions. Biochem. Soc. Trans.21(3 Pt 3), 583–595 (1993).
  • Zeller CB, Marchase RB. Gangliosides as modulators of cell function. Am. J. Physiol.262(6 Pt 1), C1341–C1355 (1992).
  • Krifuks O, Bergelson LD, Schlesinger M. The down-modulation of CD4 induced by the GM1 ganglioside is regulated by phosphatases and kinases: evidence from enzyme inhibitors and anti-CD45 antibodies. Cell. Immunol.187(1), 45–51 (1998).
  • Morrison WJ, Young K, Offner H, Vandenbark AA. Ganglioside (GM1) distinguishes the effects of CD4 on signal transduction through the TCR/CD3 complex in human lymphocytes. Cell. Mol. Biol. Res.39(2), 159–165 (1993).
  • Saggioro D, Sorio C, Calderazzo F et al. Mechanism of action of the monosialoganglioside GM1 as a modulator of CD4 expression. Evidence that GM1–CD4 interaction triggers dissociation of p56lck from CD4, and CD4 internalization and degradation. J. Biol. Chem.268(2), 1368–1375 (1993).
  • Shen W, Falahati R, Stark R, Leitenberg D, Ladisch S. Modulation of CD4 Th cell differentiation by ganglioside GD1a in vitro. J. Immunol.175(8), 4927–4934 (2005).
  • Fishman PH. Recent advances in identifying the functions of gangliosides. Chem. Phys. Lipids42(1–3), 137–151 (1986).
  • Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim. Biophys. Acta1154(3–4), 223–236 (1993).
  • Nagai Y, Iwamori M. Ganglioside distribution at different levels of organization and its biological implications. Adv. Exp. Med. Biol.174, 135–146 (1984).
  • Hakomori S, Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem.118(6), 1091–1103 (1995).
  • Gouy H, Deterre P, Debre P, Bismuth G. Cell calcium signaling via GM1 cell surface gangliosides in the human Jurkat T cell line. J. Immunol.152(7), 3271–3281 (1994).
  • Ortaldo JR, Mason AT, Longo DL, Beckwith M, Creekmore SP, McVicar DW. T cell activation via the disialoganglioside GD3: analysis of signal transduction. J. Leukoc. Biol.60(4), 533–539 (1996).
  • Norihisa Y, McVicar DW, Ghosh P et al. Increased proliferation, cytotoxicity, and gene expression after stimulation of human peripheral blood T lymphocytes through a surface ganglioside (GD3). J. Immunol.152(2), 485–495 (1994).
  • Bukowski JF, Roncarolo MG, Spits H et al. T cell receptor-dependent activation of human lymphocytes through cell surface ganglioside GT1b: implications for innate immunity. Eur. J. Immunol.30(11), 3199–3206 (2000).
  • Veri MC, DeBell KE, Seminario MC et al. Membrane raft-dependent regulation of phospholipase Cγ-1 activation in T lymphocytes. Mol. Cell. Biol.21(20), 6939–6950 (2001).
  • Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science283(5402), 680–682 (1999).
  • Fishman PH, Moss J, Osborne JC Jr. Interaction of choleragen with the oligosaccharide of ganglioside GM1: evidence for multiple oligosaccharide binding sites. Biochemistry17(4), 711–716 (1978).
  • de Haan L, Verweij W, Agsteribbe E, Wilschut J. The role of ADP-ribosylation and G(M1)-binding activity in the mucosal immunogenicity and adjuvanticity of the Escherichia coli heat-labile enterotoxin and Vibrio cholerae cholera toxin. Immunol. Cell Biol.76(3), 270–279 (1998).
  • Lycke N. From toxin to adjuvant: basic mechanisms for the control of mucosal IgA immunity and tolerance. Immunol. Lett.97(2), 193–198 (2005).
  • Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol. Today20(2), 95–101 (1999).
  • Holmes RK, Jobling MG, Connell TD. Cholera toxin and related enterotoxins of gram-negative bacteria. In: Bacterial Toxins and Virulence Factors in Disease. Moss BIJ, Vaughn M, Tu AT (Eds), Marcel Dekker, Inc., NY, USA 225–255 (1995).
  • Mekalanos JJ, Collier RJ, Romig WR. Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J. Biol. Chem.254(13), 5849–5854 (1979).
  • Moss J, Vaughan M. Toxin ADP-ribosyltransferases that act on adenylate cyclase systems. Meth. Enzymol.106, 411–418 (1984).
  • Moss J, Vaughan M. Activation of cholera toxin and Escherichia coli heat-labile enterotoxins by ADP-ribosylation factors, a family of 20 kDa guanine nucleotide-binding proteins. Mol. Microbiol.5(11), 2621–2627 (1991).
  • Gill DM, Clements JD, Robertson DC, Finkelstein RA. Subunit number and arrangement in Escherichia coli heat-labile enterotoxin. Infect. Immun.33(3), 677–682 (1981).
  • Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect. Immun.56(7), 1748–1753 (1988).
  • Critchley DR, Magnani JL, Fishman PH. Interaction of cholera toxin with rat intestinal brush border membranes. Relative roles of gangliosides and galactoproteins as toxin receptors. J. Biol. Chem.256(16), 8724–8731 (1981).
  • Orlandi PA, Critchley DR, Fishman PH. The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells. Biochemistry33(43), 12886–12895 (1994).
  • Yamada KM, Critchley DR, Fishman PH, Moss J. Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient T cells. Exp. Cell Res.143(2), 295–302 (1983).
  • Connell TD, Holmes RK. Characterization of hybrid toxins produced in Escherichia coli by assembly of A and B polypeptides from type I and type II heat-labile enterotoxins. Infect. Immun.60(4), 1653–1661 (1992).
  • Connell TD, Holmes RK. Molecular genetic analysis of ganglioside GD1b-binding activity of Escherichia coli type IIa heat-labile enterotoxin by use of random and site-directed mutagenesis. Infect. Immun.60(1), 63–70 (1992).
  • Connell TD, Holmes RK. Mutational analysis of the ganglioside-binding activity of the type II Escherichia coli heat-labile enterotoxin LT-IIb. Mol. Microbiol.16(1), 21–31 (1995).
  • Connell TD, Metzger DJ, Wang M, Jobling MG, Holmes RK. Initial studies of the structural signal for extracellular transport of cholera toxin and other proteins recognized by Vibrio cholerae. Infect. Immun.63(10), 4091–4098 (1995).
  • Northrup RS, Fauci AS. Adjuvant effect of cholera enterotoxin on the immune response of the mouse to sheep red blood cells. J. Infect. Dis.125(6), 672–673 (1972).
  • Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol.132(6), 2736–2741 (1984).
  • Vajdy M, Lycke N. Stimulation of antigen-specific T- and B-cell memory in local as well as systemic lymphoid tissues following oral immunization with cholera toxin adjuvant. Immunology80(2), 197–203 (1993).
  • Vajdy M, Lycke NY. Cholera toxin adjuvant promotes long-term immunological memory in the gut mucosa to unrelated immunogens after oral immunization. Immunology75(3), 488–492 (1992).
  • Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, De Magistris MT. Cholera toxin induces maturation of human dendritic cells and licenses them for Th2 priming. Eur. J. Immunol.30(8), 2394–2403 (2000).
  • Okahashi N, Yamamoto M, Vancott JL et al. Oral immunization of interleukin-4 (IL-4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL-6 and IL-10 are associated with mucosal immunoglobulin A responses. Infect. Immun.64(5), 1516–1525 (1996).
  • Vajdy M, Kosco-Vilbois MH, Kopf M, Kohler G, Lycke N. Impaired mucosal immune responses in interleukin 4-targeted mice. J. Exp. Med.181(1), 41–53 (1995).
  • Xu-Amano J, Kiyono H, Jackson RJ et al. Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J. Exp. Med.178(4), 1309–1320 (1993).
  • Marinaro M, Staats HF, Hiroi T et al. Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4. J. Immunol.155(10), 4621–4629 (1995).
  • Munoz E, Zubiaga AM, Merrow M, Sauter NP, Huber BT. Cholera toxin discriminates between T helper 1 and 2 cells in T cell receptor-mediated activation: role of cAMP in T cell proliferation. J. Exp. Med.172(1), 95–103 (1990).
  • Lycke NY, Strober W. Cholera toxin promotes B cell isotype differentiation. J. Immunol.142(11), 3781–3787 (1989).
  • Lycke NY. Cholera toxin promotes B cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM1-receptor binding enhances later events in differentiation. J. Immunol.150(11), 4810–4821 (1993).
  • Nashar TO, Webb HM, Eaglestone S, Williams NA, Hirst TR. Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. Proc. Natl Acad. Sci. USA93(1), 226–230 (1996).
  • Arce S, Nawar HF, Muehlinghaus G, Russell MW, Connell TD. In vitro induction of immunoglobulin A (IgA)- and IgM-secreting plasma blasts by cholera toxin depends on T-cell help and is mediated by CD154 up-regulation and inhibition of γ interferon synthesis. Infect. Immun.75(3), 1413–1423 (2007).
  • Matousek MP, Nedrud JG, Harding CV. Distinct effects of recombinant cholera toxin B subunit and holotoxin on different stages of class II MHC antigen processing and presentation by macrophages. J. Immunol.156(11), 4137–4145 (1996).
  • Grdic D, Ekman L, Schon K et al. Splenic marginal zone dendritic cells mediate the cholera toxin adjuvant effect: dependence on the ADP-ribosyltransferase activity of the holotoxin. J. Immunol.175(8), 5192–5202 (2005).
  • Anjuere F, Luci C, Lebens M et al. In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. J. Immunol.173(8), 5103–5111 (2004).
  • Shreedhar VK, Kelsall BL, Neutra MR. Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer’s patches. Infect. Immun.71(1), 504–509 (2003).
  • Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood90(9), 3245–3287 (1997).
  • Bagley KC, Abdelwahab SF, Tuskan RG, Fouts TR, Lewis GK. Cholera toxin and heat-labile enterotoxin activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cyclic AMP-dependent pathway. Infect. Immun.70(10), 5533–5539 (2002).
  • Lycke N, Karlsson U, Sjolander A, Magnusson KE. The adjuvant action of cholera toxin is associated with an increased intestinal permeability for luminal antigens. Scand. J. Immunol.33(6), 691–698 (1991).
  • Belyakov IM, Derby MA, Ahlers JD et al. Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc. Natl Acad. Sci. USA95(4), 1709–1714 (1998).
  • Manuri PR, Nehete B, Nehete PN et al. Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection. Vaccine25(17), 3302–3310 (2007).
  • Simmons CP, Hussell T, Sparer T, Walzl G, Openshaw P, Dougan G. Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective, immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. J. Immunol.166(2), 1106–1113 (2001).
  • Simmons CP, Mastroeni P, Fowler R et al. MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J. Immunol.163(12), 6502–6510 (1999).
  • Luci C, Hervouet C, Rousseau D, Holmgren J, Czerkinsky C, Anjuere F. Dendritic cell-mediated induction of mucosal cytotoxic responses following intravaginal immunization with the nontoxic B subunit of cholera toxin. J. Immunol.176(5), 2749–2757 (2006).
  • Jang MH, Kweon MN, Hiroi T, Yamamoto M, Takahashi I, Kiyono H. Induction of cytotoxic T lymphocyte responses by cholera toxin-treated bone marrow-derived dendritic cells. Vaccine21(15), 1613–1619 (2003).
  • Eriksson K, Sun JB, Nordstrom I et al. Coupling of antigen to cholera toxin for dendritic cell vaccination promotes the induction of MHC class I-restricted cytotoxic T cells and the rejection of a cognate antigen-expressing model tumor. Eur. J. Immun.34(5), 1272–1281 (2004).
  • Lavelle EC, McNeela E, Armstrong ME, Leavy O, Higgins SC, Mills KH. Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J. Immunol.171(5), 2384–2392 (2003).
  • van Ginkel FW, Jackson RJ, Yoshino N et al. Enterotoxin-based mucosal adjuvants alter antigen trafficking and induce inflammatory responses in the nasal tract. Infect. Immun.73(10), 6892–6902 (2005).
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol.165(9), 4778–4782 (2000).
  • Armstrong ME, Lavelle EC, Loscher CE, Lynch MA, Mills KH. Proinflammatory responses in the murine brain after intranasal delivery of cholera toxin: implications for the use of AB toxins as adjuvants in intranasal vaccines. J. Infect. Dis.192(9), 1628–1633 (2005).
  • Mutsch M, Zhou W, Rhodes P et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med.350(9), 896–903 (2004).
  • Tebbey PW, Scheuer CA, Peek JA et al. Effective mucosal immunization against respiratory syncytial virus using purified F protein and a genetically detoxified cholera holotoxin, CT-E29H. Vaccine18(24), 2723–2734 (2000).
  • Kato M, Imamura S, Kawase H, Miyama A, Tsuji T. Histidine-44 of the A subunit of Escherichia coli enterotoxin is involved in its enzymatic and biological activities. FEMS Microbiol. Lett.152(2), 219–225 (1997).
  • Yamamoto M, McGhee JR, Hagiwara Y, Otake S, Kiyono H. Genetically manipulated bacterial toxin as a new generation mucosal adjuvant. Scand. J. Immunol.53(3), 211–217 (2001).
  • Yamamoto S, Takeda Y, Yamamoto M et al. Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. J. Exp. Med.185(7), 1203–1210 (1997).
  • Park EJ, Chang JH, Kim JS, Yum JS, Chung SI. The mucosal adjuvanticity of two nontoxic mutants of Escherichia coli heat-labile enterotoxin varies with immunization routes. Exp. Mol. Med.32(2), 72–78 (2000).
  • Pizza M, Fontana MR, Giuliani MM et al. A genetically detoxified derivative of heat-labile Escherichia coli enterotoxin induces neutralizing antibodies against the A subunit. J. Exp. Med.180(6), 2147–2153 (1994).
  • Hirabayashi Y, Kurata H, Funato H et al. Comparison of intranasal inoculation of influenza HA vaccine combined with cholera toxin B subunit with oral or parenteral vaccination. Vaccine8(3), 243–248 (1990).
  • Tamura S, Funato H, Nagamine T, Aizawa C, Kurata T. Effectiveness of cholera toxin B subunit as an adjuvant for nasal influenza vaccination despite pre-existing immunity to CTB. Vaccine7(6), 503–505 (1989).
  • Hajishengallis G, Hollingshead SK, Koga T, Russell MW. Mucosal immunization with a bacterial protein antigen genetically coupled to cholera toxin A2/B subunits. J. Immunol.154(9), 4322–4332 (1995).
  • Richards CM, Aman AT, Hirst TR, Hill TJ, Williams NA. Protective mucosal immunity to ocular herpes simplex virus type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. J. Virol.75(4), 1664–1671 (2001).
  • Takase H, Murakami Y, Endo A, Ikeuchi T. Antibody responses and protection in mice immunized orally against influenza virus. Vaccine14(17–18), 1651–1656 (1996).
  • Tamura S, Kurata H, Funato H, Nagamine T, Aizawa C, Kurata T. Protection against influenza virus infection by a two-dose regimen of nasal vaccination using vaccines combined with cholera toxin B subunit. Vaccine7(4), 314–320 (1989).
  • Tamura S, Samegai Y, Kurata H, Nagamine T, Aizawa C, Kurata T. Protection against influenza virus infection by vaccine inoculated intranasally with cholera toxin B subunit. Vaccine6(5), 409–413 (1988).
  • Hagiwara Y, Iwasaki T, Asanuma H et al. Effects of intranasal administration of cholera toxin (or Escherichia coli heat-labile enterotoxin) B subunits supplemented with a trace amount of the holotoxin on the brain. Vaccine19(13–14), 1652–1660 (2001).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11(Suppl. 4), S45–S53 (2005).
  • Smith DJ, King WF, Barnes LA, Trantolo D, Wise DL, Taubman MA. Facilitated intranasal induction of mucosal and systemic immunity to mutans streptococcal glucosyltransferase peptide vaccines. Infect. Immun.69(8), 4767–4773 (2001).
  • Ebel F, Schmitt E, Peter-Katalinic J, Kniep B, Muhlradt PF. Gangliosides: differentiation markers for murine T helper lymphocyte subpopulations TH1 and TH2. Biochemistry31(48), 12190–12197 (1992).
  • Rodden FA, Wiegandt H, Bauer BL. Gangliosides: the relevance of current research to neurosurgery. J. Neurosurg.74(4), 606–619 (1991).
  • Rosenfelder G, Herbst H, Braun DG. Glycolipids as markers of murine T and B lymphoblastoid tumour cell lines. FEBS Lett.114(2), 213–218 (1980).
  • Jobling MG, Holmes RK. Analysis of structure and function of the B subunit of cholera toxin by the use of site-directed mutagenesis. Mol. Microbiol.5(7), 1755–1767 (1991).
  • Jobling MG, Holmes RK. Mutational analysis of ganglioside GM(1)-binding ability, pentamer formation, and epitopes of cholera toxin B (CTB) subunits and CTB/heat-labile enterotoxin B subunit chimeras. Infect. Immun.70(3), 1260–1271 (2002).
  • Guidry JJ, Cardenas L, Cheng E, Clements JD. Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli heat-labile enterotoxin. Infect. Immun.65(12), 4943–4950 (1997).
  • Nashar TO, Hirst TR, Williams NA. Modulation of B-cell activation by the B subunit of Escherichia coli enterotoxin: receptor interaction up-regulates MHC class II, B7, CD40, CD25 and ICAM-1. Immunology91(4), 572–578 (1997).
  • Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature383(6603), 787–793 (1996).
  • Turcanu V, Hirst TR, Williams NA. Modulation of human monocytes by Escherichia coli heat-labile enterotoxin B-subunit; altered cytokine production and its functional consequences. Immunology106(3), 316–325 (2002).
  • Salmond RJ, Pitman RS, Jimi E et al. CD8+ T cell apoptosis induced by Escherichia coli heat-labile enterotoxin B subunit occurs via a novel pathway involving NF-κB-dependent caspase activation. Eur. J. Immun.32(6), 1737–1747 (2002).
  • de Haan L, Verweij WR, Feil IK et al. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit. Immunology94(3), 424–430 (1998).
  • Nashar TO, Betteridge ZE, Mitchell RN. Evidence for a role of ganglioside GM1 in antigen presentation: binding enhances presentation of Escherichia coli enterotoxin B subunit (EtxB) to CD4+ T cells. Int. Immunol.13(4), 541–551 (2001).
  • Salmond RJ, Williams R, Hirst TR, Williams NA. The B subunit of Escherichia coli heat-labile enterotoxin induces both caspase-dependent and -independent cell death pathways in CD8+ T cells. Infect. Immun.72(10), 5850–5857 (2004).
  • Truitt RL, Hanke C, Radke J, Mueller R, Barbieri JT. Glycosphingolipids as novel targets for T-cell suppression by the B subunit of recombinant heat-labile enterotoxin. Infect. Immun.66(4), 1299–1308 (1998).
  • Muraguchi A, Hirano T, Tang B et al. The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells. J. Exp. Med.167(2), 332–344 (1988).
  • Rousset F, Garcia E, Defrance T et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl Acad. Sci. USA89(5), 1890–1893 (1992).
  • Connell TD, Metzger D, Sfintescu C, Evans RT. Immunostimulatory activity of LT-IIa, a type II heat-labile enterotoxin of Escherichia coli. Immunol. Lett.62(2), 117–120 (1998).
  • Hajishengallis G, Nawar H, Tapping RI, Russell MW, Connell TD. The Type II heat-labile enterotoxins LT-IIa and LT-IIb and their respective B pentamers differentially induce and regulate cytokine production in human monocytic cells. Infect. Immun.72(11), 6351–6358 (2004).
  • Martin M, Hajishengallis G, Metzger DJ, Michalek SM, Connell TD, Russell MW. Recombinant antigen-enterotoxin A2/B chimeric mucosal immunogens differentially enhance antibody responses and B7-dependent costimulation of CD4+ T cells. Infect. Immun.69(1), 252–261 (2001).
  • Martin M, Metzger DJ, Michalek SM, Connell TD, Russell MW. Comparative analysis of the mucosal adjuvanticity of the Type II heat-labile enterotoxins LT-IIa and LT-IIb. Infect. Immun.68(1), 281–287 (2000).
  • Martin M, Metzger DJ, Michalek SM, Connell TD, Russell MW. Distinct cytokine regulation by cholera toxin and Type II heat-labile toxins involves differential regulation of CD40 ligand on CD4+ T cells. Infect. Immun.69(7), 4486–4492 (2001).
  • Nawar HF, Arce S, Russell MW, Connell TD. Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities. Infect. Immun.73(3), 1330–1342 (2005).
  • Nawar HF, Arce S, Russell MW, Connell TD. Mutants of Type II heat-labile enterotoxin LT-IIa with altered ganglioside-binding activities and diminished toxicity are potent mucosal adjuvants. Infect. Immun.75(2), 621–633 (2007).
  • Naito Y, Takematsu H, Koyama S et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol.27(8), 3008–3022 (2007).
  • Liang S, Wang M, Triantafilou K et al. The A subunit of type IIb enterotoxin (LT-IIb) suppresses the proinflammatory potential of the B subunit and its ability to recruit and interact with TLR2. J. Immunol.178(8), 4811–4819 (2007).
  • Hajishengallis G, Tapping RI, Martin MH et al. Toll-like receptor 2 mediates cellular activation by the B subunits of Type II heat-labile enterotoxins. Infect. Immun.73(3), 1343–1349 (2005).
  • Liang S, Wang M, Tapping RI et al. Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin. J. Biol. Chem.282(10), 7532–7542 (2007).
  • Zhang RG, Scott DL, Westbrook ML et al. The three-dimensional crystal structure of cholera toxin. J. Mol. Biol.251(4), 563–573 (1995).
  • Sixma TK, Kalk KH, van Zanten BA et al. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol.230(3), 890–918 (1993).
  • Sixma TK, Pronk SE, Kalk KH et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature351(6325), 371–377 (1991).
  • van den Akker F, Sarfaty S, Twiddy EM, Connell TD, Holmes RK, Hol WG. Crystal structure of a new heat-labile enterotoxin, LT-IIb. Structure4(6), 665–678 (1996).
  • Lencer WI, Saslowsky D. Raft trafficking of AB5 subunit bacterial toxins. Biochim. Biophys. Acta1746(3), 314–321 (2005).

Website

  • The Lipid Library, ‘Gangliosides: structure, occurrence, biology and analysis’ www.lipidlibrary.co.uk/lipids/gang/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.