97
Views
19
CrossRef citations to date
0
Altmetric
Review

Peptide-based vaccines for cancer: realizing their potential

&
Pages 1533-1545 | Published online: 09 Jan 2014

References

  • Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell44(6), 959–968 (1986).
  • van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254(5038), 1643–1647 (1991).
  • Traversari C, van der Bruggen P, Luescher IF et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med.176(5), 1453–1457 (1992).
  • Aichele P, Hengartner H, Zinkernagel RM, Schulz M. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. J. Exp. Med.171(5), 1815–1820 (1990).
  • Kast WM, Roux L, Curren J et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc. Natl Acad. Sci. USA88(6), 2283–2287 (1991).
  • Schulz M, Zinkernagel RM, Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc. Natl Acad. Sci. USA88(3), 991–993 (1991).
  • Velders MP, Nieland JD, Rudolf MP et al. Identification of peptides for immunotherapy of cancer. It is worth the effort. Crit. Rev. Immunol.18(1–2), 7–27 (1998).
  • Pietersz GA, Pouniotis DS, Apostolopoulos V. Design of peptide-based vaccines for cancer. Curr. Med. Chem.13(14), 1591–1607 (2006).
  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov.6(5), 404–414 (2007).
  • Rotzschke O, Falk K, Deres K et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature348(6298), 252–254 (1990).
  • Hunt DF, Henderson RA, Shabanowitz J et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science255(5049), 1261–1263 (1992).
  • Hunt DF, Michel H, Dickinson TA et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science256(5065), 1817–1820 (1992).
  • Huang AY, Gulden PH, Woods AS et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl Acad. Sci. USA93(18), 9730–9735 (1996).
  • Liu R, Enstrom AM, Lam KS. Combinatorial peptide library methods for immunobiology research. Exp. Hematol.31(1), 11–30 (2003).
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol.152(1), 163–175 (1994).
  • D’Amaro J, Houbiers JG, Drijfhout JW et al. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs. Hum. Immunol.43(1), 13–18 (1995).
  • Kangueane P, Sakharkar MK. HLA-peptide binding prediction using structural and modeling principles. Methods Mol. Biol.409, 293–299 (2007).
  • Nielsen M, Lundegaard C, Blicher T et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE2(8), e796 (2007).
  • Salter RD, Cresswell P. Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J.5(5), 943–949 (1986).
  • Ljunggren HG, Stam NJ, Ohlen C et al. Empty MHC class I molecules come out in the cold. Nature346(6283), 476–480 (1990).
  • Schumacher TN, De Bruijn ML, Vernie LN et al. Peptide selection by MHC class I molecules. Nature350(6320), 703–706 (1991).
  • Schumacher TN, Heemels MT, Neefjes JJ, Kast WM, Melief CJ, Ploegh HL. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell62(3), 563–567 (1990).
  • De Bruijn ML, Schumacher TN, Nieland JD, Ploegh HL, Kast WM, Melief CJ. Peptide loading of empty major histocompatibility complex molecules on RMA-S cells allows the induction of primary cytotoxic T lymphocyte responses. Eur. J. Immunol.21(12), 2963–2970 (1991).
  • Hickman HD, Luis AD, Buchli R et al. Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J. Immunol.172(5), 2944–2952 (2004).
  • Speir JA, Abdel-Motal UM, Jondal M, Wilson IA. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Immunity10(1), 51–61 (1999).
  • Backlund J, Carlsen S, Hoger T et al. Predominant selection of T cells specific for the glycosylated collagen type II epitope (263–270) in humanized transgenic mice and in rheumatoid arthritis. Proc. Natl Acad. Sci. USA99(15), 9960–9965 (2002).
  • Van den Steen PE, Proost P, Brand DD, Kang AH, Van Damme J, Opdenakker G. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. Biochemistry43(33), 10809–10816 (2004).
  • van Stipdonk MJ, Willems AA, Amor S et al. T cells discriminate between differentially phosphorylated forms of αB-crystallin, a major central nervous system myelin antigen. Int. Immunol.10(7), 943–950 (1998).
  • McAdam SN, Fleckenstein B, Rasmussen IB et al. T cell recognition of the dominant I-A(k)-restricted hen egg lysozyme epitope: critical role for asparagine deamidation. J. Exp. Med.193(11), 1239–1246 (2001).
  • Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med.6(3), 337–342 (2000).
  • Chen W, Ede NJ, Jackson DC, McCluskey J, Purcell AW. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design. J. Immunol.157(3), 1000–1005 (1996).
  • Cao L, Sun D, Whitaker JN. Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J. Neuroimmunol.88(1–2), 21–29 (1998).
  • Ireland J, Herzog J, Unanue ER. Cutting edge: unique T cells that recognize citrullinated peptides are a feature of protein immunization. J. Immunol.177(3), 1421–1425 (2006).
  • Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr. Opin. Immunol.18(1), 92–97 (2006).
  • Kuckelkorn U, Ruppert T, Strehl B et al. Link between organ-specific antigen processing by 20S proteasomes and CD8+ T cell-mediated autoimmunity. J. Exp. Med.195(8), 983–990 (2002).
  • Purcell AW, Gorman JJ, Garcia-Peydro M et al. Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J. Immunol.166(2), 1016–1027 (2001).
  • Sesma L, Galocha B, Vazquez M et al. Qualitative and quantitative differences in peptides bound to HLA-B27 in the presence of mouse versus human tapasin define a role for tapasin as a size-dependent peptide editor. J. Immunol.174(12), 7833–7844 (2005).
  • Brooks AG, Campbell PL, Reynolds P, Gautam AM, McCluskey J. Antigen presentation and assembly by mouse I-Ak class II molecules in human APC containing deleted or mutated HLA DM genes. J. Immunol.153(12), 5382–5392 (1994).
  • Sette A, Vitiello A, Reherman B et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol.153(12), 5586–5592 (1994).
  • Denkberg G, Klechevsky E, Reiter Y. Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC–peptide complex: probing with TCR-like recombinant antibodies. J. Immunol.169(8), 4399–4407 (2002).
  • Tangri S, Ishioka GY, Huang X et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J. Exp. Med.194(6), 833–846 (2001).
  • Dyall R, Bowne WB, Weber LW et al. Heteroclitic immunization induces tumor immunity. J. Exp. Med.188(9), 1553–1561 (1998).
  • Slansky JE, Rattis FM, Boyd LF et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC–peptide–TCR complex. Immunity13(4), 529–538 (2000).
  • Sette A, Newman M, Livingston B et al. Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. Tissue Antigens59(6), 443–451 (2002).
  • Blake J, Johnston JV, Hellstrom KE, Marquardt H, Chen L. Use of combinatorial peptide libraries to construct functional mimics of tumor epitopes recognized by MHC class I-restricted cytolytic T lymphocytes. J. Exp. Med.184(1), 121–130 (1996).
  • Sharav T, Wiesmuller KH, Walden P. Mimotope vaccines for cancer immunotherapy. Vaccine25(16), 3032–3037 (2007).
  • Wang Y, Rubtsov A, Heiser R et al. Using a baculovirus display library to identify MHC class I mimotopes. Proc. Natl Acad. Sci. USA102(7), 2476–2481 (2005).
  • Tumenjargal S, Gellrich S, Linnemann T et al. Anti-tumor immune responses and tumor regression induced with mimotopes of a tumor-associated T cell epitope. Eur. J. Immunol.33(11), 3175–3185 (2003).
  • Linnemann T, Tumenjargal S, Gellrich S et al. Mimotopes for tumor-specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur. J. Immunol.31(1), 156–165 (2001).
  • Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol.15(4), 461–470 (2003).
  • Guichard G, Zerbib A, Le Gal FA et al. Melanoma peptide MART-1(27–35) analogues with enhanced binding capacity to the human class I histocompatibility molecule HLA-A2 by introduction of a β-amino acid residue: implications for recognition by tumor-infiltrating lymphocytes. J. Med. Chem.43(20), 3803–3808 (2000).
  • Webb AI, Dunstone MA, Williamson NA et al. T cell determinants incorporating beta-amino acid residues are protease resistant and remain immunogenic in vivo. J. Immunol.175(6), 3810–3818 (2005).
  • Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI. β-amino acids: versatile peptidomimetics. Curr. Med. Chem.9(8), 811–822 (2002).
  • Marschutz MK, Zauner W, Mattner F, Otava A, Buschle M, Bernkop-Schnurch A. Improvement of the enzymatic stability of a cytotoxic T-lymphocyte-epitope model peptide for its oral administration. Peptides23(10), 1727–1733 (2002).
  • McGregor DP. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol. DOI: 10.1016/j.coph.2008.06.002 (2008) (Epub ahead of print).
  • Blank VC, Pena C, Roquin LP. A cyclic chimeric interferon-α2b peptide induces apoptosis in tumor cells. Cancer Biol. Ther.6(11), 1787–1793 (2007).
  • Perera Y, Farina HG, Hernandez I et al. Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int. J. Cancer.122(1), 57–62 (2008).
  • Shindoh N, Mori M, Terada Y et al. YM753, a novel histone deacetylase inhibitor, exhibits antitumor activity with selective, sustained accumulation of acetylated histones in tumors in the WiDr xenograft model. Int. J. Oncol.32(3), 545–555 (2008).
  • Torres C, Antileo E, Epunan MJ, Pino AM, Valladares LE, Sierralta WD. A cyclic peptide derived from α-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells. Oncol. Rep.19(6), 1597–1603 (2008).
  • Kast WM, Brandt RM, Melief CJ. Strict peptide length is not required for the induction of cytotoxic T lymphocyte-mediated antiviral protection by peptide vaccination. Eur. J. Immunol.23(5), 1189–1192 (1993).
  • Zwaveling S, Ferreira Mota SC, Nouta J et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol.169(1), 350–358 (2002).
  • Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol.38(4), 1033–1042 (2008).
  • Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J. Immunol.179(8), 5033–5040 (2007).
  • Kenter GG, Welters MJ, Valentijn AR et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res.14(1), 169–177 (2008).
  • Tindle RW, Fernando GJ, Sterling JC, Frazer IH. A “public” T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc. Natl Acad. Sci. USA88(13), 5887–5891 (1991).
  • Dell K, Koesters R, Gissmann L. Transcutaneous immunization in mice: induction of T-helper and cytotoxic T lymphocyte responses and protection against human papillomavirus-induced tumors. Int. J. Cancer118(2), 364–372 (2006).
  • Karanikas V, Hwang LA, Pearson J et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan–MUC1 fusion protein. J. Clin. Invest.100(11), 2783–2792 (1997).
  • Karanikas V, Colau D, Baurain JF et al. High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res.61(9), 3718–3724 (2001).
  • White K, Kearns P, Toth I, Hook S. Increased adjuvant activity of minimal CD8 T cell peptides incorporated into lipid-core-peptides. Immunol. Cell. Biol.82(5), 517–522 (2004).
  • Brandt ER, Sriprakash KS, Hobb RI et al. New multi-determinant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nat. Med.6(4), 455–459 (2000).
  • Sadler K, Zeng W, Jackson DC. Synthetic peptide epitope-based polymers: controlling size and determining the efficiency of epitope incorporation. J. Pept. Res.60(3), 150–158 (2002).
  • Fitzmaurice CJ, Brown LE, McInerney TL, Jackson DC. The assembly and immunological properties of non-linear synthetic immunogens containing T-cell and B-cell determinants. Vaccine14(6), 553–560 (1996).
  • Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nat. Rev. Immunol.1(2), 126–134 (2001).
  • Toes RE, Blom RJ, Offringa R, Kast WM, Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J. Immunol.156(10), 3911–3918 (1996).
  • Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA93(15), 7855–7860 (1996).
  • Toes RE, van der Voort EI, Schoenberger SP et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. J. Immunol.160(9), 4449–4456 (1998).
  • Weijzen S, Meredith SC, Velders MP, Elmishad AG, Schreiber H, Kast WM. Pharmacokinetic differences between a T cell-tolerizing and a T cell-activating peptide. J. Immunol.166(12), 7151–7157 (2001).
  • Koh YT, Higgins SA, Weber JS, Kast WM. Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund’s adjuvant. J. Transl. Med.4, 42 (2006).
  • Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev.156, 199–209 (1997).
  • Ahonen CL, Doxsee CL, McGurran SM et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med.199(6), 775–784 (2004).
  • Ulevitch RJ. Therapeutics targeting the innate immune system. Nat. Rev. Immunol.4(7), 512–520 (2004).
  • Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine25(19), 3752–3762 (2007).
  • Tomai MA, Miller RL, Lipson KE, Kieper WC, Zarraga IE, Vasilakos JP. Resiquimod and other immune response modifiers as vaccine adjuvants. Expert Rev. Vaccines6(5), 835–847 (2007).
  • Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Natl Acad. Sci. USA94(20), 10833–10837 (1997).
  • Vicente-Suarez I, Takahashi Y, Cheng F et al. Identification of a novel negative role of flagellin in regulating IL-10 production. Eur. J. Immunol.37(11), 3164–3175 (2007).
  • Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev.188, 147–154 (2002).
  • Lee P, Wang F, Kuniyoshi J et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J. Clin. Oncol.19(18), 3836–3847 (2001).
  • Dakappagari NK, Pyles J, Parihar R, Carson WE, Young DC, Kaumaya PT. A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. J. Immunol.170(8), 4242–4253 (2003).
  • Stevceva L, Moniuszko M, Ferrari MG. Utilizing IL-12, IL-15 and IL-7 as mucosal vaccine adjuvants. Lett. Drug Des. Discov.3(8), 586–592 (2006).
  • McKenna HJ, Stocking KL, Miller RE et al. Mice lacking Flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood95(11), 3489–3497 (2000).
  • Maraskovsky E, Daro E, Roux E et al.In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood96(3), 878–884 (2000).
  • Bracci L, La Sorsa V, Belardelli F, Proietti E. Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Rev. Vaccines7(3), 373–381 (2008).
  • Jensen FC, Savary JR, Diveley JP, Chang JC. Adjuvant activity of incomplete Freund’s adjuvant. Adv. Drug Deliv. Rev.32(3), 173–186 (1998).
  • Petrovsky N. Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine24(Suppl. 2), S2–26–29 (2006).
  • Blachere NE, Li Z, Chandawarkar RY et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186(8), 1315–1322 (1997).
  • Flechtner JB, Cohane KP, Mehta S et al. High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J. Immunol.177(2), 1017–1027 (2006).
  • Pilla L, Patuzzo R, Rivoltini L et al. A Phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol. Immunother.55(8), 958–968 (2006).
  • Khan S, Bijker MS, Weterings JJ et al. Distinct uptake mechanisms but similar intracellular processing of two different Toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem.282(29), 21145–21159 (2007).
  • Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol. Cell. Biol.83(2), 119–128 (2005).
  • Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. ISCOM, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature308(5958), 457–460 (1984).
  • Kersten GF, Crommelin DJ. Liposomes and ISCOMs. Vaccine21(9–10), 915–920 (2003).
  • Daftarian P, Mansour M, Benoit AC et al. Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine24(24), 5235–5244 (2006).
  • Daftarian PM, Mansour M, Pohajdak B et al. Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax encapsulated CTL/T helper peptides. J. Transl. Med.5, 26 (2007).
  • Mansour M, Pohajdak B, Kast WM et al. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax. J. Transl. Med.5, 20 (2007).
  • Chaput N, Schartz NE, Andre F et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J. Immunol.172(4), 2137–2146 (2004).
  • Chaput N, Taieb J, Schartz N et al. The potential of exosomes in immunotherapy of cancer. Blood Cells Mol. Dis.35(2), 111–115 (2005).
  • Chaput N, Flament C, Viaud S et al. Dendritic cell derived-exosomes: biology and clinical implementations. J. Leukoc. Biol.80(3), 471–478 (2006).
  • Schumacher R, Amacker M, Neuhaus D et al. Efficient induction of tumoricidal cytotoxic T lymphocytes by HLA-A0201 restricted, melanoma associated, L(27)Melan-A/MART-1(26–35) peptide encapsulated into virosomes in vitro. Vaccine23(48–49), 5572–5582 (2005).
  • Angel J, Chaperot L, Molens JP et al. Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells. Vaccine25(19), 3913–3921 (2007).
  • Glenn GM, Scharton-Kersten T, Vassell R, Mallett CP, Hale TL, Alving CR. Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J. Immunol.161(7), 3211–3214 (1998).
  • Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med.6(12), 1403–1406 (2000).
  • Glenn GM, Kenney RT, Ellingsworth LR, Frech SA, Hammond SA, Zoeteweij JP. Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. Expert Rev. Vaccines2(2), 253–267 (2003).
  • Belyakov IM, Hammond SA, Ahlers JD, Glenn GM, Berzofsky JA. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J. Clin. Invest.113(7), 998–1007 (2004).
  • Scharton-Kersten T, Yu J, Vassell R, O’Hagan D, Alving CR, Glenn GM. Transcutaneous immunization with bacterial ADP-ribosylating exotoxins, subunits, and unrelated adjuvants. Infect. Immun.68(9), 5306–5313 (2000).
  • Tierney R, Beignon AS, Rappuoli R, Muller S, Sesardic D, Partidos CD. Transcutaneous immunization with tetanus toxoid and mutants of Escherichia coli heat-labile enterotoxin as adjuvants elicits strong protective antibody responses. J. Infect. Dis.188(5), 753–758 (2003).
  • Klimuk SK, Najar HM, Semple SC, Aslanian S, Dutz JP. Epicutaneous application of CpG oligodeoxynucleotides with peptide or protein antigen promotes the generation of CTL. J. Invest. Dermatol.122(4), 1042–1049 (2004).
  • Rechtsteiner G, Warger T, Osterloh P, Schild H, Radsak MP. Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod. J. Immunol.174(5), 2476–2480 (2005).
  • Warger T, Schild H, Rechtsteiner G. Initiation of adaptive immune responses by transcutaneous immunization. Immunol. Lett.109(1), 13–20 (2007).
  • Mishra D, Dubey V, Asthana A, Saraf DK, Jain NK. Elastic liposomes mediated transcutaneous immunization against hepatitis B. Vaccine24(22), 4847–4855 (2006).
  • Mishra D, Mishra PK, Dubey V, Dabadghao S, Jain NK. Evaluation of uptake and generation of immune response by murine dendritic cells pulsed with hepatitis B surface antigen-loaded elastic liposomes. Vaccine25(39–40), 6939–6944 (2007).
  • Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol. Rev.220, 129–150 (2007).
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature449(7161), 419–426 (2007).
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10), 790–802 (2007).
  • Ullrich E, Menard C, Flament C et al. Dendritic cells and innate defense against tumor cells. Cytokine Growth Factor Rev.19(1), 79–92 (2008).
  • Grover A, Kim GJ, Lizee G et al. Intralymphatic dendritic cell vaccination induces tumor antigen-specific, skin-homing T lymphocytes. Clin. Cancer Res.12(19), 5801–5808 (2006).
  • Kavanagh B, Ko A, Venook A et al. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J. Immunother.30(7), 762–772 (2007).
  • Santin AD, Bellone S, Palmieri M et al. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a Phase I escalating-dose trial. J. Virol.82(4), 1968–1979 (2008).
  • Palucka AK, Ueno H, Connolly J et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother.29(5), 545–557 (2006).
  • Muderspach L, Wilczynski S, Roman L et al. A Phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin. Cancer Res.6(9), 3406–3416 (2000).
  • Aarnoudse CA, Garcia Vallejo JJ, Saeland E, van Kooyk Y. Recognition of tumor glycans by antigen-presenting cells. Curr. Opin. Immunol.18(1), 105–111 (2006).
  • Ramakrishna V, Treml JF, Vitale L et al. Mannose receptor targeting of tumor antigen Pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J. Immunol.172(5), 2845–2852 (2004).
  • Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res.65(15), 7007–7012 (2005).
  • Aarnoudse CA, Bax M, Sanchez-Hernandez M, Garcia-Vallejo JJ, van Kooyk Y. Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells. Int. J. Cancer122(4), 839–846 (2008).
  • Kretz-Rommel A, Qin F, Dakappagari N et al.In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J. Immunother.30(7), 715–726 (2007).
  • Rezvani K, Yong AS, Mielke S et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood111(1), 236–242 (2008).
  • Slingluff CL Jr, Petroni GR, Chianese-Bullock KA et al. Immunologic and clinical outcomes of a randomized Phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin. Cancer Res.13(21), 6386–6395 (2007).
  • Testori A, Richards J, Whitman E et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100–121 Study Group. J. Clin. Oncol.26(6), 955–962 (2008).
  • Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol.166(9), 5398–5406 (2001).
  • Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer5(4), 263–274 (2005).
  • Gajewski TF, Meng Y, Blank C et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev.213, 131–145 (2006).
  • Quesnel B. Cancer vaccines and tumor dormancy: a long-term struggle between host antitumor immunity and persistent cancer cells? Expert Rev. Vaccines5(6), 773–781 (2006).
  • Nagaraj S, Gabrilovich DI. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res.68(8), 2561–2563 (2008).
  • Svane IM, Pedersen AE, Johansen JS et al. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol. Immunother.56(9), 1485–1499 (2007).
  • Lambeck A. Immunisation with a p53 synthetic long peptides vaccine induces p53-specific immune responses in patients with ovarian cancer, a Phase I/II trial. In: Novel Immunotherapeutic Modalities for Gynaecologic Malignancies. University of Groningen, Groningen, The Netherlands, 112–141 (2008).
  • Rodriguez PC, Hernandez CP, Quiceno D et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med.202(7), 931–939 (2005).
  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res.11(18), 6713–6721 (2005).
  • Ercolini AM, Ladle BH, Manning EA et al. Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J. Exp. Med.201(10), 1591–1602 (2005).
  • Viehl CT, Moore TT, Liyanage UK et al. Depletion of CD4+ CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann. Surg. Oncol.13(9), 1252–1258 (2006).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115(12), 3623–3633 (2005).
  • Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood110(9), 3192–3201 (2007).
  • Gray A, Raff AB, Chiriva-Internati M, Chen SY, Kast WM. A paradigm shift in therapeutic vaccination of cancer patients: the need to apply therapeutic vaccination strategies in the preventive setting. Immunol. Rev.222, 316–327 (2008).
  • Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E. Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res.67(3), 1326–1334 (2007).
  • Garcia-Hernandez Mde L, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res.68(3), 861–869 (2008).
  • Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer8(5), 351–360 (2008).
  • Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol. Immunother.57(10), 1511–1421(2008).
  • Holmes JP, Benavides LC, Gates JD et al. Results of the first Phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J. Clin. Oncol.26(20), 3426–3433 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.