67
Views
24
CrossRef citations to date
0
Altmetric
Special Report

STEP trial and HIV-1 vaccines inducing T-cell responses

Pages 303-309 | Published online: 09 Jan 2014

References

  • Pantophlet R, Burton DR. GP120: target for neutralizing HIV-1 antibodies. Annu. Rev. Immunol.24, 739–769 (2006).
  • Cohen J. AIDS research. Did Merck’s failed HIV vaccine cause harm? Science318, 1048–1049 (2007).
  • Ledford H. HIV vaccine may raise risk. Nature450, 325 (2007).
  • Aste-Amezaga M, Bett AJ, Wang F et al. Quantitative adenovirus neutralization assays based on the secreted alkaline phosphatase reporter gene: application in epidemiologic studies and in the design of adenovector vaccines. Hum. Gene Ther.15, 293–304 (2004).
  • Bauer U, Flunker G, Bruss K et al. Detection of antibodies against adenovirus protein IX, fiber, and hexon in human sera by immunoblot assay. J. Clin. Microbiol.43, 4426–4433 (2005).
  • Kostense S, Koudstaal W, Sprangers M et al. Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector. AIDS18, 1213–1216 (2004).
  • Nwanegbo E, Vardas E, Gao W et al. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin. Diagn. Lab. Immunol.11, 351–357 (2004).
  • McCoy K, Tatsis N, Korioth-Schmitz B et al. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J. Virol.81, 6594–6604 (2007).
  • Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441, 239–243 (2006).
  • Deng H, Liu R, Ellmeier W et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature381, 661–666 (1996).
  • Trkola A, Dragic T, Arthos J et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature384, 184–187 (1996).
  • Cocchi F, DeVico AL, Garzino-Demo A et al. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat. Med.2, 1244–1247 (1996).
  • Staprans SI, Barry AP, Silvestri G et al. Enhanced SIV replication and accelerated progression to AIDS in macaques primed to mount a CD4 T cell response to the SIV envelope protein. Proc. Natl Acad. Sci. USA101, 13026–13031 (2004).
  • Stanley SK, Ostrowski MA, Justement JS et al. Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1. N. Engl. J. Med.334, 1222–1230 (1996).
  • Denniston GC, Hill G. Male circumcision in HIV prevention. Lancet369, 1598; author reply 1598–1599 (2007).
  • O’Brien SJ, Gao X, Carrington M. HLA and AIDS: a cautionary tale. Trends Mol. Med.7, 379–381 (2001).
  • Freeman EE, Weiss HA, Glynn JR et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS20, 73–83 (2006).
  • McMichael AJ. HIV vaccines. Annu. Rev. Immunol.24, 227–255 (2006).
  • Borrow P, Lewicki H, Hahn BE et al. Virus-specific CD8+ CTL activity associated with control of viremia in primary HIV-1 infection. J. Virol.68, 6103–6110 (1994).
  • Koup RA, Safrit JT, Cao Y et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol.68, 4650–4655 (1994).
  • Matano T, Shibata R, Siemon C et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J. Virol.72, 164–169. (1998).
  • Jin X, Bauer DE, Tuttleton SE et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189, 991–998 (1999).
  • Schmitz JE, Kuroda MJ, Sasseville VG et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science283, 857–860 (1999).
  • Klenerman P, Wu Y, Phillips R. HIV: current opinion in escapology. Curr. Opin. Microbiol.5, 408–413 (2002).
  • Fellay J, Shianna KV, Ge D et al. A whole-genome association study of major determinants for host control of HIV-1. Science317, 944–947 (2007).
  • Barouch DH, Santra S, Schmitz JE et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science290, 486–492 (2000).
  • Casimiro DR, Wang F, Schleif WA et al. Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing gag. J. Virol.79, 15547–15555 (2005).
  • Kent SJ, Zhao A, Best SJ et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol.72, 10180–10188 (1998).
  • Robinson HL, Montefiori DC, Johnson RP et al. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nat. Med.5, 526–534 (1999).
  • Rowland-Jones SL, McMichael A. Immune responses in HIV-exposed seronegatives: have they repelled the virus? Curr. Opin. Immunol.7, 448–455 (1995).
  • Fujiwara M, Takiguchi M. HIV-1-specific CTLs effectively suppress replication of HIV-1 in HIV-1-infected macrophages. Blood109, 4832–4838 (2007).
  • Stittelaar KJ, Gruters RA, Schutten M et al. Comparison of the efficacy of early versus late viral proteins in vaccination against SIV. Vaccine20, 2921–2927 (2002).
  • Yang H, Dong T, Turnbull E et al. Broad TCR usage in functional HIV-1-specific CD8+ T cell expansions driven by vaccination during highly active antiretroviral therapy. J. Immunol.179, 597–606 (2007).
  • Yang OO, Kalams SA, Trocha A et al. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolityc and noncytolytic mechanisms. J. Virol.71, 3120–3128 (1997).
  • Alabi AS, Jaffar S, Ariyoshi K et al. Plasma viral load, CD4 cell percentage, HLA and survival of HIV-1, HIV-2, and dually infected Gambian patients. AIDS17, 1513–1520 (2003).
  • Hebart H, Daginik S, Stevanovic S et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-γ-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood99, 3830–3837 (2002).
  • Vine AM, Heaps AG, Kaftantzi L et al. The role of CTLs in persistent viral infection: cytolytic gene expression in CD8+ lymphocytes distinguishes between individuals with a high or low proviral load of human T cell lymphotropic virus type 1. J. Immunol.173, 5121–5129 (2004).
  • Reyes-Sandoval A, Fitzgerald JC, Grant R et al. Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes. J. Virol.78, 7392–7399 (2004).
  • Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature415, 331–335. (2002).
  • Casimiro D, Dubery S, Tobery T et al. Breadth of the HIV-specific cellular responses to replication – defective adenovirus HIV vaccines in healthy subjects. Presented at: AIDS Vaccine 2006. Amsterdam, The Netherlands, 29 August–1 September 2006.
  • Baalen CA, Guillon C, Baalen MvM et al. Impact of antigen expression kinetics on the effectiveness of HIV-specific cytotoxic T lymphocytes. Eur. J. Immunol.32, 2644–2652 (2002).
  • Kubota R, Soldan SS, Martin R et al. An altered peptide ligand antagonizes antigen-specific T cells of patients with human T lymphotropic virus type I-associated neurological disease. J. Immunol.164, 5192–5198 (2000).
  • Rowland-Jones SL, Pinheiro S, Kaul R et al. How important is the ‘quality’ of the cytotoxic T lymphocyte (CTL) response in protection against HIV infection? Immunol. Lett.79, 15–20 (2001).
  • Zhang D, Shankar P, Xu Z et al. Most antiviral CD8 T cells during chronic viral infection do not express high levels of perforin and are not directly cytotoxic. Blood101, 226–235 (2003).
  • Almeida JR, Price DA, Papagno L et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med.204, 2473–2485 (2007).
  • Betts MR, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood107, 4781–4789 (2006).
  • Appay V, Dunbar PR, Callan M et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med.8, 379–385 (2002).
  • Harari A, Vallelian F, Pantaleo G. Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. Eur. J. Immunol.34, 3525–3533 (2004).
  • Harari A, Zimmerli SC, Pantaleo G. Cytomegalovirus (CMV)-specific cellular immune responses. Hum. Immunol.65, 500–506 (2004).
  • Lin SW, Hensley SE, Tatsis N et al. Recombinant adeno-associated virus vectors induce functionally impaired transgene product-specific CD8+ T cells in mice. J. Clin. Invest.117, 3958–3970 (2007).
  • Leifer CA, Verthelyi D, Klinman DM. Heterogeneity in the human response to immunostimulatory CpG oligodeoxynucleotides. J. Immunother.26, 313–319 (2003).
  • Schulz O, Diebold SS, Chen M et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature433, 887–892 (2005).
  • Amanna IJ, Slifka MK, Crotty S. Immunity and immunological memory following smallpox vaccination. Immunol. Rev.211, 320–337 (2006).
  • Estcourt MJ, Letourneau S, McMichael AJ et al. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur. J. Immunol.35, 2532–2540 (2005).
  • Lambert PH, Liu M, Siegrist CA. Can successful vaccines teach us how to induce efficient protective immune responses? Nat. Med.11, S54–S62 (2005).
  • Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell124, 849–863 (2006).
  • Querec T, Bennouna S, Alkan S et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med.203, 413–424 (2006).
  • Goonetilleke N, Moore S, Dally L et al. Prime–boost vaccination with recombinant DNA and MVA expressing HIV-1 clade A gag and immunodominant CTL epitopes induces multi-functional HIV-1-specific T cells in healthy subjects. J. Virol.80, 4717–4728 (2006).
  • Harari A, Bart PA, Stohr W et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med.205, 63–77 (2008).
  • Lemckert AA, Sumida SM, Holterman L et al. Immunogenicity of heterologous prime–boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J. Virol.79, 9694–9701 (2005).
  • Tatsis N, Lin SW, Harris-McCoy K et al. Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology367, 156–167 (2007).
  • McDermott AB, O’Connor DH, Fuenger S et al. Cytotoxic T-lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in adenovirus-boosted and DNA-primed Mamu-A*01-positive rhesus macaques. J. Virol.79, 15556–15566 (2005).
  • Wilson NA, Reed J, Napoe GS et al. Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. J. Virol.80, 5875–5885 (2006).
  • Letourneau S, Im E-J, Mashishi T et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS ONE2(10), e984 (2007).
  • Gaschen B, Taylor J, Yusim K et al. Diversity considerations in HIV-1 vaccine selection. Science296, 2354–2360 (2002).
  • Fischer W, Perkins S, Theiler J et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med.13, 100–106 (2007).
  • Nickle DC, Rolland M, Jensen MA et al. Coping with viral diversity in HIV vaccine design. PLoS Comput. Biol.3, e75 (2007).
  • Rolland M, Jensen MA, Nickle DC et al. Reconstruction and function of ancestral center-of-tree human immunodeficiency virus type 1 proteins. J. Virol.81, 8507–8514 (2007).
  • Ferrari G, Kostyu DD, Cox J et al. Identification of highly conserved and broadly cross-reactive HIV type 1 cytotoxic T lymphocyte epitopes as candidate immunogens for inclusion in Mycobacterium bovis BCG-vectored HIV vaccines. AIDS Res. Hum. Retroviruses16, 1433–1443 (2000).
  • Wilson CC, McKinney D, Anders M et al. Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. J. Immunol.171, 5611–5623 (2003).
  • Catanzaro AT, Koup RA, Roederer M et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect. Dis.194, 1638–1649 (2006).
  • Catanzaro AT, Roederer M, Koup RA et al. Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine25, 4085–4092 (2007).
  • Korber B, Gaschen B, Yusim K et al. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull.58, 19–42 (2001).
  • Honeyborne I, Prendergast A, Pereyra F et al. Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8+ T-cell epitopes. J. Virol.81, 3667–3672 (2007).
  • Kiepiela P, Ngumbela K, Thobakgale C et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med.13, 46–53 (2007).
  • Rolland M, Heckerman D, Deng W et al. Broad and gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS ONE3, e1424 (2008).
  • Flynn NM, Forthal DN, Harro CD et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis.191, 654–665 (2005).
  • Gilbert PB, Peterson ML, Follmann D et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a Phase 3 HIV-1 preventive vaccine trial. J. Infect. Dis.191, 666–677 (2005).
  • Mills E, Siegfried N. Cautious optimism for new HIV/AIDS prevention strategies. Lancet368, 1236 (2006).
  • Excler JL, Rida W, Priddy F et al. A strategy for accelerating the development of preventive AIDS vaccines. AIDS21, 2259–2263 (2007).
  • Steinbrook R. One step forward, two steps back – will there ever be an AIDS vaccine? N. Engl. J. Med.357, 2653–2655 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.