282
Views
42
CrossRef citations to date
0
Altmetric
Review

Type I interferons as vaccine adjuvants against infectious diseases and cancer

, , &
Pages 373-381 | Published online: 09 Jan 2014

References

  • Edelman R. Vaccine adjuvants. Rev. Infect. Dis.2(3), 370–383 (1980).
  • Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat. Biotechnol.17(11), 1075–1081 (1999).
  • Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine25(19), 3752–3762 (2007).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Lin R, Tarr PE, Jones TC. Present status of the use of cytokines as adjuvants with vaccines to protect against infectious diseases. Clin. Infect. Dis.21(6), 1439–1449 (1995).
  • Chelbi-Alix MK, Wietzerbin J. Interferon, a growing cytokine family: 50 years of interferon research. Biochimie89(6–7), 713–778 (2007).
  • Belardelli F, Vignaux F, Proietti E, Gresser I. Injection of mice with antibody to interferon renders peritoneal macrophages permissive for vesicular stomatitis virus and encephalomyocarditis virus. Proc. Natl Acad. Sci. USA81(2), 602–606 (1984).
  • Brassard DL, Grace MJ and Bordens RW. Interferon-α as an immunotherapeutic protein. J. Leukoc. Biol.71(4), 565–581 (2002).
  • Bekisz J, Schmeisser H, Hernandez J, Goldman ND, Zoon KC. Human interferons α, β and ω. Growth Factors22(4), 243–251 (2004).
  • Biron CA. Role of early cytokines, including α and β interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin. Immunol.10(5), 383–390 (1998).
  • Biron CA. Interferons a and b as immune regulators – a new look. Immunity14(6), 661–664 (2001).
  • Belardelli F, Gresser I. The neglected role of type I interferon in the T-cell response: implications for its clinical use. Immunol. Today17(8), 369–372 (1996).
  • Le Bon A, Etchart N, Rossmann C et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol.4(10), 1009–1015 (2003).
  • Wenner CA, Guler ML, Macatonia SE, O’Garra A, Murphy KM. Roles of IFN-γ and IFN-α in IL-12-induced T helper cell-1 development. J. Immunol.156(4), 1442–1447 (1996).
  • Yates A, Bergmann C, Van Hemmen JL, Stark J, Callard R. Cytokine-modulated regulation of helper T cell populations. J. Theor. Biol.206(4), 539–560 (2000).
  • Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14(4), 461–470 (2001).
  • Proietti E, Bracci L, Puzelli S et al. Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J. Immunol.169(1), 375–383 (2002).
  • So EY, Park HH, Lee CE. IFN-γ and IFN-α posttranscriptionally down-regulate the IL-4-induced IL-4 receptor gene expression. J. Immunol.165(10), 5472–5479 (2000).
  • Ishikawa R, Biron CA. IFN induction and associated changes in splenic leukocyte distribution. J. Immunol.150(9), 3713–3727 (1993).
  • Fitzgerald-Bocarsly P, Feng D. The role of type I interferon production by dendritic cells in host defense. Biochimie89(6–7), 843–855 (2007).
  • Santini SM, Lapenta C, Logozzi M et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med.191(10), 1777–1788 (2000).
  • Honda K, Sakaguchi S, Nakajima C et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl Acad. Sci. USA100(19), 10872–10877 (2003).
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5(11), 1249–1255 (1999).
  • Luft T, Pang KC, Thomas E et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol.161(4), 1947–1953 (1998).
  • Uematsu S, Akira S. Toll-like receptors and type I interferons. J. Biol. Chem.282(21), 15319–15323 (2007).
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol.5(7), 505–517 (2007).
  • Siren J, Pirhonen J, Julkunen I, Matikainen S. IFN-α regulates TLR-dependent gene expression of IFN-α, IFN-β, IL-28, and IL-29. J. Immunol.174(4), 1932–1937 (2005).
  • Lore K, Betts MR, Brenchley JM et al. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol.171(8), 4320–4328 (2003).
  • Fujimoto C, Nakagawa Y, Ohara K, Takahashi H. Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int. Immunol.16(1), 55–63 (2004).
  • Mattei F, Schiavoni G, Belardelli F, Tough DF. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol.167(3), 1179–1187 (2001).
  • Salem ML, Kadima AN, Cole DJ, Gillanders WE. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J. Immunother (1997).28(3), 220–228 (2005).
  • Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine24(24), 5119–5132 (2006).
  • Durand V, Wong SY, Tough DF, Le Bon A. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-α/β. Immunol. Cell Biol.82(6), 596–602 (2004).
  • McBride S, Hoebe K, Georgel P, Janssen E. Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN. J. Immunol.177(9), 6122–6128 (2006).
  • Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5(7), 730–737 (2004).
  • Yoneyama M, Kikuchi M, Matsumoto K et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol.175(5), 2851–2858 (2005).
  • Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. Mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl Acad. Sci. USA99(2), 637–642 (2002).
  • Gitlin L, Barchet W, Gilfillan S et al. Essential role of Mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA103(22), 8459–8464 (2006).
  • Kornbluth RS, Stone GW. Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J. Leukoc. Biol.80(5), 1084–1102 (2006).
  • Doyle S, Vaidya S, O’Connell R et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity17(3), 251–263 (2002).
  • Hertzog PJ, O’Neill LA, Hamilton JA. The interferon in TLR signaling: more than just antiviral. Trends Immunol.24(10), 534–539 (2003).
  • Hamilton JA, Whitty GA, Kola I, Hertzog PJ. Endogenous IFN-α/β suppresses colony-stimulating factor (CSF)-1-stimulated macrophage DNA synthesis and mediates inhibitory effects of lipopolysaccharide and TNF-α. J. Immunol.156(7), 2553–2557 (1996).
  • Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303(5663), 1526–1529 (2004).
  • Gorden KB, Gorski KS, Gibson SJ et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol.174(3), 1259–1268 (2005).
  • Wagner TL, Ahonen CL, Couture AM et al. Modulation of Th1 and Th2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell. Immunol.191(1), 10–19 (1999).
  • Vasilakos JP, Smith RM, Gibson SJ et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell. Immunol.204(1), 64–74 (2000).
  • Wille-Reece U, Flynn BJ, Lore K et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA102(42), 15190–15194 (2005).
  • Tokunaga T, Yamamoto H, Shimada S et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst.72(4), 955–962 (1984).
  • Cho HJ, Hayashi T, Datta SK et al. IFN-α/β promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol.168(10), 4907–4913 (2002).
  • Wakita D, Chamoto K, Zhang Y et al. An indispensable role of type-1 IFNs for inducing CTL-mediated complete eradication of established tumor tissue by CpG-liposome co-encapsulated with model tumor antigen. Int. Immunol.18(3), 425–434 (2006).
  • Takaoka A, Wang Z, Choi MK et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448(7152), 501–505 (2007).
  • Bramson JL, Dayball K, Hall JR et al. Super-activated interferon-regulatory factors can enhance plasmid immunization. Vaccine21(13–14), 1363–1370 (2003).
  • Sato M, Suemori H, Hata N et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity13(4), 539–548 (2000).
  • Sasaki S, Amara RR, Yeow WS, Pitha PM, Robinson HL. Regulation of DNA-raised immune responses by cotransfected interferon regulatory factors. J. Virol.76(13), 6652–6659 (2002).
  • Ferrantini M, Belardelli F. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Semin. Cancer Biol.10(2), 145–157 (2000).
  • Tovey MG, Lallemand C, Meritet JF, Maury C. Adjuvant activity of interferon a: mechanism(s) of action. Vaccine24(Suppl. 2), 46–47 (2006).
  • Cheng G, Zhao X, Yan W et al. α interferon is a powerful adjuvant for a recombinant protein vaccine against foot-and-mouth disease virus in swine, and an effective stimulus of in vivo immune response. Vaccine25(28), 5199–5208 (2007).
  • Cull VS, Broomfield S, Bartlett EJ, Brekalo NL, James CM. Coimmunisation with type I IFN genes enhances protective immunity against cytomegalovirus and myocarditis in gB DNA-vaccinated mice. Gene Ther.9(20), 1369–1378 (2002).
  • Potebnya GP, Kudryavets YY, Lisovenko GS et al. Experimental study of the efficacy of combined use of cancer vaccine and interferon. Exp. Oncol.29(2), 102–105 (2007).
  • Prell RA, Li B, Lin JM, VanRoey M, Jooss K. Administration of IFN-α enhances the efficacy of a granulocyte macrophage colony stimulating factor-secreting tumor cell Vaccine Cancer Res.65(6), 2449–2456 (2005).
  • Grob PJ, Joller-Jemelka HI, Binswanger U, Zaruba K, Descoeudres C, Fernex M. Interferon as an adjuvant for hepatitis B vaccination in non- and low-responder populations. Eur. J. Clin. Microbiol.3(3), 195–198 (1984).
  • Goldwater PN. Randomized comparative trial of Interferon-α versus placebo in hepatitis B vaccine non-responders and hyporesponders. Vaccine12(5), 410–414 (1994).
  • Rizza P, Capone I, Urbani F et al. Evaluation of the effects of human leukocyte IFN-α on the immune response to the HBV vaccine in healthy unvaccinated individuals. Vaccine26(8), 1038–1049 (2008).
  • Di Pucchio T, Pilla L, Capone I et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-α results in the activation of specific CD8+ T cells and monocyte/dendritic cell precursors. Cancer Res.66(9), 4943–4951 (2006).
  • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol.3(4), 331–341 (2003).
  • De Magistris MT. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv. Drug Deliv. Rev.58(1), 52–67 (2006).
  • Freytag LC, Clements JD. Mucosal adjuvants. Vaccine23(15), 1804–1813 (2005).
  • Meritet JF, Maury C, Tovey MG. Effect of oromucosal administration of IFN-α on allergic sensitization and the hypersensitive inflammatory response in animals sensitized to ragweed pollen. J. Interferon Cytokine Res.21(8), 583–593 (2001).
  • Bracci L, Canini I, Puzelli S et al. Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine23(23), 2994–3004 (2005).
  • Gresser I. The antitumor effects of interferon: a personal history. Biochimie89(6–7), 723–728 (2007).
  • Brodeur BR, Merigan TC. Suppressive effect of interferon on the humoral immune response to sheep red blood cells in mice. J. Immunol.113(4), 1319–1325 (1974).
  • Farrar JD, Smith JD, Murphy TL, Leung S, Stark GR, Murphy KM. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nat. Immunol.1(1), 65–69 (2000).
  • Gottenberg JE, Chiocchia G. Dendritic cells and interferon-mediated autoimmunity. Biochimie89(6–7), 856–871 (2007).
  • Gilboa E. DC-based cancer vaccines. J. Clin. Invest.117(5), 1195–1203 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.