182
Views
30
CrossRef citations to date
0
Altmetric
Review

Heat-shock protein-based vaccines for cancer and infectious disease

Pages 383-393 | Published online: 09 Jan 2014

References

  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity8, 657–665 (1998).
  • Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl Acad. Sci. USA83, 3407–3411 (1986).
  • Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol.152, 5398–5403 (1994).
  • Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med.178, 1391–1396 (1993).
  • Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J. Exp. Med.189, 797–802 (1999).
  • Wang XY, Kazim L, Repasky EA, Subjeck JR. Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J. Immunol.166, 490–497 (2001).
  • Srivastava PK. Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Adv. Cancer Res.62, 153–177 (1993).
  • Li Z, Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J.12, 3143–3151 (1993).
  • Srivastava PK, Heike M. Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin.Immunol.3, 57–64 (1991).
  • Zhu X, Zhao X, Burkholder WF et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science272, 1606–1614 (1996).
  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell89, 239–250 (1997).
  • Linderoth NA, Popowicz A, Sastry S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J. Biol. Chem.275, 5472–5477 (2000).
  • Gidalevitz T, Biswas C, Ding H et al. Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J. Biol. Chem.279, 16543–16552 (1994).
  • Castelli C, Ciupitu AM, Rini F et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res.61, 222–227 (2001).
  • Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc. Natl Acad. Sci. USA93, 6135–6139 (1996).
  • Heikema A, Agsteribbe E, Wilschut J, Huckriede A. Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol. Lett.57, 69–74 (1997).
  • Navaratnam M, Deshpande MS, Hariharan MJ, Zatechka DS Jr, Srikumaran S. Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1. Vaccine19, 1425–1434 (2001).
  • Meng SD, Gao T, Gao GF, Tien P. HBV-specific peptide associated with heat-shock protein gp96. Lancet357, 528–529 (2001).
  • Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH. 96-peptide vaccination of mice against intracellular bacteria. Infect. Immun.69, 4164–4167 (2001).
  • Breloer M, Marti T, Fleischer B, von Bonin A. Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur. J. Immunol.28, 1016–1021 (1998).
  • Arnold D, Faath S, Rammensee H, Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med.182, 885–889 (1995).
  • Arnold D, Wahl C, Faath S, Rammensee HG, Schild H. Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J. Exp. Med.186, 461–466 (1997).
  • Ishii T, Udono H, Yamano T et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol.162, 1303–1309 (1999).
  • Binder RJ, Kelly JB 3rd, Vatner RE, Srivastava PK. Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating proteins. J. Immunol.179, 7254–7261 (2007).
  • Kunisawa J, Shastri N. Hsp90a chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity24, 523–534 (2006).
  • Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science269, 1585–1588 (1995).
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity14, 303–313 (2001).
  • Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat. Immunol.6, 593–599 (2005).
  • Kurotaki T, Tamura Y, Ueda G et al. Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J. Immunol.179, 1803–1813 (2007).
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat. Immunol.1, 151–155 (2000).
  • Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc. Natl Acad. Sci. USA101, 6128–6133 (2004).
  • Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J. Immunol.172, 6087–6092 (2004).
  • SenGupta D, Norris PJ, Suscovich TJ et al. Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J. Immunol.173, 1987–1993 (2004).
  • Tobian AA, Canaday DH, Harding CV. Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. J. Immunol.173, 5130–5137 (2004).
  • Blachere NE, Li Z, Chandawarkar RY et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186, 1315–1322 (1997).
  • Shinagawa N, Yamazaki K, Tamura Y et al. Immunotherapy with dendritic cells pulsed with tumor-derived gp96 against murine lung cancer is effective through immune response of CD8+ cytotoxic T lymphocytes and natural killer cells. Cancer Immunol. Immunother.57, 165–174 (2007).
  • Binder RJ, Karimeddini D, Srivastava PK. Adjuvanticity of α2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J. Immunol.166, 4968–4972 (2001).
  • Peng P, Menoret A, Srivastava PK. Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J. Immunol. Methods204, 13–21 (1997).
  • Jung S, Unutmaz D, Wong P et al.In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity17, 211–220 (2002).
  • Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA91, 3077–3081 (1994).
  • Binder RJ, Harris ML, Menoret A, Srivastava PK. Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J. Immunol.165, 2582–2587 (2000).
  • Arnold-Schild D, Hanau D, Spehner D et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol.162, 3757–3760 (1999).
  • Tobian AA, Canaday DH, Boom WH, Harding CV. Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J. Immunol.172, 5277–5286 (2004).
  • Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17, 353–362 (2002).
  • Habich C, Baumgart K, Kolb H, Burkart V. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J. Immunol.168, 569–576 (2002).
  • Banerjee PP, Vinay DS, Mathew A et al. Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule. J. Immunol.169, 3507–3518 (2002).
  • Ogden CA, de Cathelineau A, Hoffmann PR et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med.194, 781–795 (2001).
  • Vandivier RW, Ogden CA, Fadok VA et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol.169, 3978–3986 (2002).
  • Ling S, Pi X, Holoshitz J. The rheumatoid arthritis shared epitope triggers innate immune signaling via cell surface calreticulin. J. Immunol.179, 6359–6367 (2007).
  • Yewdell JW. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol.11, 294–297 (2001).
  • Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER. Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J. Immunol.179, 2310–2317 (2007).
  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κ B pathway. Int. Immunol.12, 1539–1546 (2000).
  • Singh-Jasuja H, Scherer HU, Hilf N et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol.30, 2211–2215 (2000).
  • Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J. Immunol.168, 2997–3003 (2002).
  • Lehner T, Bergmeier LA, Wang Y et al. Heat shock proteins generate β-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur. J. Immunol.30, 594–603 (2000).
  • Srivastava PK, Das MR. The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int. J. Cancer33, 417–422 (1984).
  • Palladino MA Jr, Srivastava PK, Oettgen HF, DeLeo AB. Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas. Cancer Res.47, 5074–5079 (1987).
  • Feldweg AM, Srivastava PK. Molecular heterogeneity of tumor rejection antigen/heat shock protein GP96. Int. J. Cancer63, 310–314 (1995).
  • Yedavelli SP, Guo L, Daou ME, Srivastava PK, Mittelman A, Tiwari RK. Preventive and therapeutic effect of tumor derived heat shock protein, gp96, in an experimental prostate cancer model. Int. J. Mol. Med.4, 243–248 (1999).
  • Janetzki S, Blachere NE, Srivastava PK. Generation of tumor-specific cytotoxic T lymphocytes and memory T cells by immunization with tumor-derived heat shock protein gp96. J. Immunother.21, 269–276 (1998).
  • Sato K, Torimoto Y, Tamura Y et al. Immunotherapy using heat-shock protein preparations of leukemia cells after syngeneic bone marrow transplantation in mice. Blood98, 1852–1857 (2001).
  • Goyos A, Cohen N, Gantress J, Robert J. Anti-tumor MHC class Iaunrestricted CD8 T cell cytotoxicity elicited by the heat shock protein gp96. Eur. J. Immunol.34, 2449–2458 (2004).
  • Chandawarkar RY, Wagh MS, Srivastava PK. The dual nature of specific immunological activity of tumor-derived gp96 preparations. J. Exp. Med.189, 1437–1442 (1999).
  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278, 117–120 (1997).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes. J. Clin. Oncol.20, 4169–4180 (2002).
  • Mazzaferro V, Coppa J, Carrabba MG et al. Vaccination with autologous tumor derived heat shock protein peptide complex gp-96 (HSPPC-96) following curative resection of colorectal liver metastases. Clin. Cancer Res.9, 3235–3245 (2003).
  • Fong L, Hou Y, Rivas A et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. Sci. USA98, 8809–8814 (2001).
  • Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res.61, 6451–6458 (2001).
  • Vonderheide RH, Domchek SM, Schultze JL et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res.10, 828–839 (2004).
  • Thurner B, Haendle I, Röder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190, 1669–1678 (1999).
  • Lee P, Wang F, Kuniyoshi J et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J. Clin. Oncol.19, 3836–3847 (2001).
  • Rosenberg SA, Sherry RM, Morton KE et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol.175, 6169–6176 (2005).
  • Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96: a pilot study. Int. J. Cancer88, 232–238 (2000).
  • Amato RJ, Murray L, Wood L, Savary C, Tomasovic S, Reitsma D. Active specific immunotherapy in patients with renal cell carcinoma (RCC) using autologous tumor derived heat shock protein-peptide comples-96 (HSPP-96) vaccine. Presented at: American Society of Clinical Oncology Meeting. Atlanta, GA, USA, 15–18 May, 2000.
  • Amato RJ, Murray L, Wood L et al. Active specific immunotherapy in patients with renal cell carcinoma (RCC) using autologous tumor derived heat shock protein-peptide comples-96 (HSPP-96) vaccine. Presented at: American Society of Clinical Oncology Meeting. New Orleans, LA, USA, 21–24 May, 1999.
  • Eton O, East MJ, Ross M et al. Autologous tumor-derived heat shock protein-peptide comples-96 (HSPP-96) in patients (PTS) with metastatic melanoma. Proc. Am. Assoc. Cancer Res.41, 543 (2000).
  • Rivoltini L, Castelli C, Carrabba M et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma and colon carcinoma-specific T cells. J. Immunology171, 3467–3474 (2003).
  • Li Z, Qiao Y, Liu B et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin. Cancer Res.11, 4460–4468 (2005).
  • Richards J, Testori A, Whitman E et al. Autologous tumor-derived HSPPC-96 vs. physician’s choice (PC) in a randomized Phase III trial in stage IV melanoma. Presented at: ASCO Meeting. Atlanta, GA, USA, 2–6 June, 2006.
  • Kumaraguru U, Suvas S, Biswas PS, Azkur AK, Rouse BT. Concomitant helper response rescues otherwise low avidity CD8+ memory CTLs to become efficient effectors in vivo. J. Immunol.172, 3719–3724 (2004).
  • DeLeo AB. Tumor rejection antigens of the chemically induced BALB/c Meth A sarcoma. Immunol. Ser.61, 31–36 (1994).
  • Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor-α release by murine macrophages. J. Biol. Chem.278, 174–179 (2003).
  • Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV. GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J. Exp. Med.196, 1447–1459 (2002).
  • McDonald E, Workman P, Jones K. Inhibitors of the HSP90 molecular chaperone: attacking the master regulator in cancer. Curr. Top. Med. Chem.6, 1091–1107 (2006).
  • Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics39, 93–98 (1994).
  • Binder RJ, Blachere NE, Srivastava PK. Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J. Biol. Chem.276, 17163–17171 (2001).
  • Shastri N, Cardinaud S, Schwab SR, Serwold T, Kunisawa J. All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol. Rev.207, 31–41 (2005).
  • Rajagopal D, Bal V, Mayor S, George A, Rath S. A role for the Hsp90 molecular chaperone family in antigen presentation to T lymphocytes via major histocompatibility complex class II molecules. Eur. J. Immunol.36, 828–841 (2006).
  • Yamano T, Murata S, Shimbara N et al. Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J. Exp. Med.196, 185–196 (2002).
  • Callahan MK, Garg M, Srivastava PK. Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc. Natl Acad. Sci. USA105, 1662–1667 (2008).
  • Blachere NE, Darnell RB, Albert ML. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol.3, e185 (2005).
  • Yang Y, Liu B, Dai J et al. Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity26, 215–226 (2007).
  • Ménoret A, Peng P, Srivastava PK. Association of peptides with heat shock protein gp96 occurs in vivo and not after cell lysis. Biochem. Biophys. Res. Commun.262, 813–818 (1999).
  • Li M, Davey GM, Sutherland RM et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J. Immunol.166, 6099–6103 (2001).
  • Castilleja A, Ward NE, O’Brian CA et al. Accelerated HER-2 degradation enhances ovarian tumor recognition by CTL. Implications for tumor immunogenicity. Mol. Cell. Biochem.217, 21–33 (2001).
  • Binder RJ, Kumar SK, Srivastava PK. Naturally formed or artificially reconstituted noncovalent α2-macroglobulin-peptide complexes elicit CD91-dependent cellular immunity. Cancer Immun.2, 16 (2002).
  • Binder RJ, Vatner R, Srivastava PK. The heat-shock protein receptors: some answers and more questions. Tissue Antigens64, 442–451 (2004).
  • Zeng Y, Chen X, Larmonier N et al. Natural killer cells play a key role in the antitumor immunity generated by chaperone-rich cell lysate vaccination. Int. J. Cancer119, 2624–2631 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.