97
Views
12
CrossRef citations to date
0
Altmetric
Review

Microenvironmental impact on lung cell homeostasis and immunity during infection

&
Pages 457-466 | Published online: 09 Jan 2014

References

  • Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol.8(2), 142–152 (2008).
  • Moyron-Quiroz J, Rangel-Moreno J, Carragher DM, Randall TD. The function of local lymphoid tissues in pulmonary immune responses. Adv. Exp. Med. Biol.590, 55–68 (2007).
  • Vermaelen K, Pauwels R. Pulmonary dendritic cells. Am. J. Respir. Crit. Care Med.172(5), 530–551 (2005).
  • Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat. Rev. Immunol.3, 994–1003 (2003).
  • von Garnier C, Filgueira L, Wikstrom M et al. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J. Immunol.175(3), 1609–1618 (2005).
  • Vermaelen K, Pauwels R. Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry A61(2), 170–177 (2004).
  • Landsman L, Jung S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J. Immunol.179(6), 3488–3494 (2007).
  • Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol.178(4), 2000–2007 (2007).
  • Bilyk N, Holt PG. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte/macrophage colony-stimulating factor. J. Exp. Med.177(6), 1773–1777 (1993).
  • MacLean JA, Xia W, Pinto CE et al. Sequestration of inhaled particulate antigens by lung phagocytes. A mechanism for the effective inhibition of pulmonary cell-mediated immunity. Am. J. Pathol.148(2), 657–666 (1996).
  • Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ. Modulation of dendritic cell trafficking to and from the airways. J. Immunol.176(6), 3578–3584 (2006).
  • Holt PG, Oliver J, Bilyk N et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med.177(2), 397–407 (1993).
  • Holt PG, Haining S, Nelson DJ, Sedgwick JD. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol.153(1), 256–261 (1994).
  • Sung SS, Fu SM, Rose CE Jr et al. A major lung CD103 (αE)-β7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol.176(4), 2161–2172 (2006).
  • Jakubzick C, Tacke F, Ginhoux F et al. Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations. J. Immunol.180(5), 3019–3027 (2008).
  • del Rio ML, Rodriguez-Barbosa JI, Kremmer E, Forster R. CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol.178(11), 6861–6866 (2007).
  • Coombes JL, Siddiqui KR, Arancibia-Carcamo CV et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204(8), 1757–1764 (2007).
  • Chiu BC, Freeman CM, Stolberg VR et al. Impaired lung dendritic cell activation in CCR2 knockout mice. Am. J. Pathol.165(4), 1199–1209 (2004).
  • Osterholzer JJ, Ames T, Polak T et al. CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J. Immunol.175(2), 874–883 (2005).
  • Robays LJ, Maes T, Lebecque S et al. Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J. Immunol.178(8), 5305–5311 (2007).
  • Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med.193(1), 51–60 (2001).
  • Baluk P, Fuxe J, Hashizume H et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med.204(10), 2349–2362 (2007).
  • Hintzen G, Ohl L, del Rio ML et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol.177(10), 7346–7354 (2006).
  • Dodge IL, Carr MW, Cernadas M, Brenner MB. IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J. Immunol.170(9), 4457–4464 (2003).
  • Chen L, Arora M, Yarlagadda M et al. Distinct responses of lung and spleen dendritic cells to the TLR9 agonist CpG oligodeoxynucleotide. J. Immunol.177(4), 2373–2383 (2006).
  • Happel KI, Dubin PJ, Zheng M et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med.202(6), 761–769 (2005).
  • Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin. Immunol.19(6), 377–382 (2007).
  • Scott-Browne JP, Shafiani S, Tucker-Heard G et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J. Exp. Med.204(9), 2159–2169 (2007).
  • Wang H, Peters N, Schwarze J. Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol.177(9), 6263–6270 (2006).
  • Stick SM, Holt PG. The airway epithelium as immune modulator: the LARC ascending. Am. J. Respir. Cell Mol. Biol.28(6), 641–644 (2003).
  • Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat. Rev. Immunol.8, 193–203 (2008).
  • Thorley AJ, Ford PA, Giembycz MA et al. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J. Immunol.178(1), 463–473 (2007).
  • Takabayshi K, Corr M, Hayashi T et al. Induction of a homeostatic circuit in lung tissue by microbial compounds. Immunity24(4), 475–487 (2006).
  • Soumelis V, Reche PA, Kanzler H et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol.3(7), 673–680 (2002).
  • Zhou B, Comeau MR, De Smedt T et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol.6(10), 1047–1053 (2005).
  • Al-Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med.202(6), 829–839 (2005).
  • Lee HC, Ziegler SF. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkB. Proc. Natl Acad. Sci. USA104(3), 914–919 (2007).
  • Kato A, Favoreto S Jr, Avila PC, Schleimer RP. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol.179(2), 1080–1087 (2007).
  • Christensen PJ, Armstrong LR, Fak JJ et al. Regulation of rat pulmonary dendritic cell immunostimulatory activity by alveolar epithelial cell-derived granulocyte macrophage colony-stimulating factor. Am. J. Respir. Cell Mol. Biol.13(4), 426–433 (1995).
  • Cates EC, Fattouh R, Wattie J et al. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J. Immunol.173(10), 6384–6392 (2004).
  • Xanthou G, Alissafi T, Semitekolou M et al. Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat. Med.13(5), 570–578 (2007).
  • Lee CG, Link H, Baluk P et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances Th2-mediated sensitization and inflammation in the lung. Nat. Med.10(10), 1095–1103 (2004).
  • Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol.8(1), 11–13 (2007).
  • Raz E. Organ-specific regulation of innate immunity. Nat. Immunol.8(1), 3–4 (2007).
  • Mebius RE. Vitamins in control of lymphocyte migration. Nat. Immunol.8(3), 229–230 (2007).
  • Macpherson AJ, McCoy K. APRIL in the intestine: a good destination for immunoglobulin A(2). Immunity26(6), 755–757 (2007).
  • Armstrong L, Medford AR, Uppington KM et al. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol.31(2), 241–245 (2004).
  • Mayer AK, Muehmer M, Mages J et al. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J. Immunol.178(5), 3134–3142 (2007).
  • Guillot L, Medjane S, Le-Barillec K et al. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J. Biol. Chem.279(4), 2712–2718 (2004).
  • Soong G, Reddy B, Sokol S, Adamo R, Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest.113(10), 1482–1489 (2004).
  • Thorley AJ, Goldstraw P, Young A, Tetley TD. Primary human alveolar type II epithelial cell CCL20 (macrophage inflammatory protein-3α)-induced dendritic cell migration. Am. J. Respir. Cell Mol. Biol.32(4), 262–267 (2005).
  • Holt PG, Schon-Hegrad MA. Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: implications for immune function studies. Immunology62(3), 349–356 (1987).
  • Sertl K, Takemura T, Tschachler E et al. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J. Exp. Med.163(2), 436–451 (1986).
  • Jahnsen FL, Strickland DH, Thomas JA et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol.177(9), 5861–5867 (2006).
  • Cleret A, Quesnel-Hellmann A, Vallon-Eberhard A et al. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol.178(12), 7994–8001 (2007).
  • Wolf AJ, Desvignes L, Linas B et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med.205(1), 105–115 (2008).
  • Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med.203(13), 2841–2852 (2006).
  • Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell124(4), 767–782 (2006).
  • Tournier JN, Quesnel-Hellmann A. Host–pathogen interactions: a biological rendez-vous of the infectious nonself and danger models? PLoS Pathog.2(5), e44 (2006).
  • Tournier JN, Quesnel-Hellmann A, Cleret A, Vidal DR. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell. Microbiol.9(3), 555–565 (2007).
  • Agrawal A, Lingappa J, Leppla SH et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature424(6946), 329–334 (2003).
  • Tournier JN, Quesnel-Hellmann A, Mathieu J et al. Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J. Immunol.174(8), 4934–4941 (2005).
  • Oyston PC, Sjostedt A, Titball RW. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat. Rev. Microbiol.2(12), 967–978 (2004).
  • Hall JD, Craven RR, Fuller JR, Pickles RJ, Kawula TH. Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect. Immun.75(2), 1034–1039 (2007).
  • Henry T, Brotcke A, Weiss DS, Thompson LJ, Monack DM. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med.204(5), 987–994 (2007).
  • Bosio CM, Dow SW. Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J. Immunol.175(10), 6792–6801 (2005).
  • Bosio CM, Bielefeldt-Ohmann H, Belisle JT. Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J. Immunol.178(7), 4538–4547 (2007).
  • Metzger DW, Bakshi CS, Kirimanjeswara G. Mucosal immunopathogenesis of Francisella tularensis. Ann. NY Acad. Sci.1105, 266–283 (2007).
  • Butchar JP, Rajaram MV, Ganesan LP et al.Francisella tularensis induces IL-23 production in human monocytes. J. Immunol.178(7), 4445–4454 (2007).
  • Prentice MB, Rahalison L. Plague. Lancet369(9568), 1196–1207 (2007).
  • Velan B, Bar-Haim E, Zauberman A et al. Discordance in the effects of Yersinia pestis on the dendritic cell functions manifested by induction of maturation and paralysis of migration. Infect. Immun.74(11), 6365–6376 (2006).
  • Sing A, Rost D, Tvardovskaia N et al. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J. Exp. Med.196(8), 1017–1024 (2002).
  • Sing A, Reithmeier-Rost D, Granfors K et al. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Proc. Natl Acad. Sci. USA102(44), 16049–16054 (2005).
  • Lathem WW, Crosby SD, Miller VL, Goldman WE. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc. Natl Acad. Sci. USA102(49), 17786–17791 (2005).
  • Lathem WW, Price PA, Miller VL, Goldman WE. A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science315(5811), 509–513 (2007).
  • Khader SA, Bell GK, Pearl JE et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol.8(4), 369–377 (2007).
  • Wolf AJ, Linas B, Trevejo-Nunez GJ et al.Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol.179(4), 2509–2519 (2007).
  • Ordway D, Henao-Tamayo M, Harton M et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent Th1 response followed by rapid down-regulation. J. Immunol.179(1), 522–531 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.