94
Views
40
CrossRef citations to date
0
Altmetric
Review

Tuberculosis: vaccines in the pipeline

&
Pages 635-650 | Published online: 09 Jan 2014

References

  • Fine P. Stopping routine vaccination for tuberculosis in schools. BMJ331, 647–648 (2005).
  • Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M. Tuberculosis control in the era of HIV. Nat. Rev. Immunol.5, 819–826 (2005).
  • Cobelens FG, van Deutekom H, Draayer-Jansen IW et al. Risk of infection with Mycobacterium tuberculosis in travellers to areas of high tuberculosis endemicity. Lancet356, 461–465 (2000).
  • Houston S. Tuberculosis risk and prevention in travelers – what about BCG? J. Travel Med.4, 76–82 (1997).
  • Jung P, Banks RH. Tuberculosis risk in US Peace Corps Volunteers, 1996 to 2005. J. Travel Med.15, 87–94 (2008).
  • Brosch R, Vincent V. Cutting-edge science and the future of tuberculosis control. Bull. World Health Organ.85, 410–412 (2007).
  • Mitsuyama M, McMurray DN. Tuberculosis: vaccine and drug development. Tuberculosis (Edinb.)87(Suppl. 1), S10–S13 (2007).
  • Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol.4, 469–476 (2006).
  • Andersen P. Tuberculosis vaccines – an update. Nat. Rev. Microbiol.5, 484–487 (2007).
  • Reed S, Lobet Y. Tuberculosis vaccine development; from mouse to man. Microbes Infect.7, 922–931 (2005).
  • Kaufmann SH. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol.5, 491–504 (2007).
  • Beveridge NE, Price DA, Casazza JP et al. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol.37, 3089–3100 (2007).
  • Majlessi L, Simsova M, Jarvis Z et al. An increase in antimycobacterial Th1-cell responses by prime–boost protocols of immunization does not enhance protection against tuberculosis. Infect. Immun.74, 2128–2137 (2006).
  • Brennan MJ, Fruth U, Milstien J, Tiernan R, de Andrade Nishioka S, Chocarro L. Development of new tuberculosis vaccines: a global perspective on regulatory issues. PLoS Med.4, e252 (2007).
  • Sadoff JC, Hone D. The role of “go no-go” decisions in TB vaccine development. Microbes Infect.7, 899–904 (2005).
  • Williams A, Hatch GJ, Clark SO et al. Evaluation of vaccines in the EU TB vaccine cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis (Edinb.)85, 29–38 (2005).
  • Girard MP, Fruth U, Kieny MP. A review of vaccine research and development: tuberculosis. Vaccine23, 5725–5731 (2005).
  • Young D, Dye C. The development and impact of tuberculosis vaccines. Cell124, 683–687 (2006).
  • Gupta UD, Katoch VM, McMurray DN. Current status of TB vaccines. Vaccine25, 3742–3751 (2007).
  • Roth AE, Stensballe LG, Garly ML, Aaby P. Beneficial non-targeted effects of BCG – ethical implications for the coming introduction of new TB vaccines. Tuberculosis (Edinb.)86, 397–403 (2006).
  • McShane H, Hill A. Prime–boost immunisation strategies for tuberculosis. Microbes Infect.7, 962–967 (2005).
  • Xing Z, Carters TJ. Heterologous boost vaccines for bacillus Calmette–Guerin prime immunization against tuberculosis. Expert Rev. Vaccines6(4), 539–546 (2007).
  • Haile M, Hamasur B, Jaxmar T et al. Nasal boost with adjuvanted heat-killed BCG or arabinomannan-protein conjugate improves primary BCG-induced protection in C57BL/6 mice. Tuberculosis (Edinb.)85, 107–114 (2005).
  • Rodrigues LC, Pereira SM, Cunha SS et al. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG–REVAC cluster-randomised trial. Lancet366, 1290–1295 (2005).
  • Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P. Mucosal administration of Ag85B–ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette–Guerin immunity. J. Immunol.177, 6353–6360 (2006).
  • Andersen CS, Dietrich J, Agger EM, Lycke NY, Lovgren K, Andersen P. The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect. Immun.75, 408–416 (2007).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Enhancing the protective efficacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein. Infect. Immun.73, 4676–4683 (2005).
  • Romano M, D’Souza S, Adnet PY et al. Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine24, 3353–3364 (2006).
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun.74, 4634–4643 (2006).
  • Pathan AA, Sander CR, Fletcher HA et al. Boosting BCG with recombinant modified vaccinia Ankara expressing antigen 85A: different boosting intervals and implications for efficacy trials. PLoS ONE2, e1052 (2007).
  • Behr MA, Small PM. Has BCG attenuated to impotence? Nature389, 133–134 (1997).
  • Hernandez-Pando R, Castanon M, Espitia C, Lopez-Vidal Y. Recombinant BCG vaccine candidates. Curr. Mol. Med.7, 365–372 (2007).
  • Nasser Eddine A, Kaufmann SH. Improved protection by recombinant BCG. Microbes Infect.7, 939–946 (2005).
  • Castanon-Arreola M, Lopez-Vidal Y, Espitia-Pinzon C, Hernandez-Pando R. A new vaccine against tuberculosis shows greater protection in a mouse model with progressive pulmonary tuberculosis. Tuberculosis (Edinb.)85, 115–126 (2005).
  • Sugawara I, Li Z, Sun L, Udagawa T, Taniyama T. Recombinant BCG Tokyo (Ag85A) protects cynomolgus monkeys (Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis. Tuberculosis (Edinb.)87, 518–525 (2007).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. A novel live recombinant mycobacterial vaccine against bovine tuberculosis more potent than BCG. Vaccine24, 1593–1600 (2006).
  • Ryan AA, Spratt JM, Britton WJ, Triccas JA. Secretion of functional monocyte chemotactic protein 3 by recombinant Mycobacterium bovis BCG attenuates vaccine virulence and maintains protective efficacy against M. tuberculosis infection. Infect. Immun.75, 523–526 (2007).
  • Aldwell FE, Cross ML, Fitzpatrick CE, Lambeth MR, de Lisle GW, Buddle BM. Oral delivery of lipid-encapsulated Mycobacterium bovis BCG extends survival of the bacillus in vivo and induces a long-term protective immune response against tuberculosis. Vaccine24, 2071–2078 (2006).
  • Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guerin mutants that secrete listeriolysin. J. Clin. Invest.115, 2472–2479 (2005).
  • Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol.178, 1274–1282 (1996).
  • Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284, 1520–1523 (1999).
  • Sambandamurthy VK, Jacobs WR Jr. Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis. Microbes Infect.7, 955–961 (2005).
  • Hernandez Pando R, Aguilar LD, Infante E et al. The use of mutant mycobacteria as new vaccines to prevent tuberculosis. Tuberculosis (Edinb.)86, 203–210 (2006).
  • Sambandamurthy VK, Derrick SC, Hsu T et al.Mycobacterium tuberculosis δRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine24, 6309–6320 (2006).
  • Waters WR, Palmer MV, Nonnecke BJ et al. Failure of a Mycobacterium tuberculosis DRD1 DpanCD double deletion mutant in a neonatal calf aerosol M. bovis challenge model: comparisons to responses elicited by M. bovis bacille Calmette Guerin. Vaccine25, 7832–7840 (2007).
  • Hinchey J, Lee S, Jeon BY et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest.117, 2279–2288 (2007).
  • Martin C, Williams A, Hernandez-Pando R et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine24, 3408–3419 (2006).
  • Lowrie DB. DNA vaccines for therapy of tuberculosis: where are we now? Vaccine24, 1983–1989 (2006).
  • Triccas JA, Shklovskaya E, Spratt J et al. Effects of DNA- and Mycobacterium bovis BCG-based delivery of the Flt3 ligand on protective immunity to Mycobacterium tuberculosis. Infect. Immun.75, 5368–5375 (2007).
  • McMurry JA, Kimball S, Lee JH et al. Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice. Curr. Mol. Med.7, 351–368 (2007).
  • Derrick SC, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6–Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine23, 780–788 (2004).
  • Wu Y, Woodworth JS, Shin DS, Morris S, Behar SM. Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infect. Immun.76, 2249–2255 (2008).
  • Sugawara I, Udagawa T, Taniyama T. Protective efficacy of recombinant (Ag85A) BCG Tokyo with Ag85A peptide boosting against Mycobacterium tuberculosis-infected guinea pigs in comparison with that of DNA vaccine encoding Ag85A. Tuberculosis (Edinb.)87, 94–101 (2007).
  • Vipond J, Vipond R, Allen-Vercoe E et al. Selection of novel TB vaccine candidates and their evaluation as DNA vaccines against aerosol challenge. Vaccine24, 6340–6350 (2006).
  • Okada M, Kita Y, Nakajima T et al. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine 25, 2990–2993 (2007).
  • Maue AC, Waters WR, Palmer MV et al. An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis. Vaccine25, 4735–4746 (2007).
  • Li H, Li R, Zhong S et al. The immunogenicity and protective efficacy of Mtb8.4/hIL-12 chimeric gene vaccine. Vaccine24, 1315–1323 (2006).
  • Zhang X, Divangahi M, Ngai P et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine25, 1342–1352 (2007).
  • Yoshida S, Tanaka T, Kita Y et al. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine24, 1191–1204 (2006).
  • Chang-Hong S, Xiao-Wu W, Hai Z, Ting-Fen Z, Li-Mei W, Zhi-Kai X. Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis. DNA Cell Biol.27(4), 199–207 (2008).
  • Fan X, Gao Q, Fu R. DNA vaccine encoding ESAT-6 enhances the protective efficacy of BCG against Mycobacterium tuberculosis infection in mice. Scand. J. Immunol.66, 523–528 (2007).
  • Yu DH, Li M, Hu XD, Cai H. A combined DNA vaccine enhances protective immunity against Mycobacterium tuberculosis and Brucella abortus in the presence of an IL-12 expression vector. Vaccine25, 6744–6754 (2007).
  • Andersen P, Doherty TM. TB subunit vaccines – putting the pieces together. Microbes Infect.7, 911–921 (2005).
  • Doherty TM, Dietrich J, Billeskov R. Tuberculosis subunit vaccines: from basic science to clinical testing. Expert Opin. Biol. Ther.7, 1539–1549 (2007).
  • Walker KB, Keeble J, Colaco C. Mycobacterial heat shock proteins as vaccines – a model of facilitated antigen presentation. Curr. Mol. Med.7, 339–350 (2007).
  • Sable SB, Plikaytis BB, Shinnick TM. Tuberculosis subunit vaccine development: impact of physicochemical properties of mycobacterial test antigens. Vaccine25, 1553–1566 (2007).
  • Campuzano J, Aguilar D, Arriaga K et al. The PGRS domain of Mycobacterium tuberculosis PE_PGRS Rv1759c antigen is an efficient subunit vaccine to prevent reactivation in a murine model of chronic tuberculosis. Vaccine25, 3722–3729 (2007).
  • Rigano MM, Dreitz S, Kipnis AP, Izzo AA, Walmsley AM. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine24, 691–695 (2006).
  • Hovav AH, Bercovier H. Pseudo-rationale design of efficient TB vaccines: lesson from the mycobacterial 27-kDa lipoprotein. Tuberculosis (Edinb.)86, 225–235 (2006).
  • Wang B, Henao-Tamayo M, Harton M et al. A Toll-like receptor-2-directed fusion protein vaccine against tuberculosis. Clin. Vaccine Immunol.14, 902–906 (2007).
  • Jeon BY, Kim HJ, Kim SC et al. Protection of mice against Mycobacterium tuberculosis infection by immunization with aqueous fraction of Triton X-100-soluble cell wall proteins. Scand. J. Immunol.67, 18–23 (2008).
  • Agger EM, Rosenkrands I, Olsen AW et al. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine24, 5452–5460 (2006).
  • Wong YL, Sampson S, Germishuizen WA et al. Drying a tuberculosis vaccine without freezing. Proc. Natl Acad. Sci. USA104, 2591–2595 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.