136
Views
33
CrossRef citations to date
0
Altmetric
Special Focus Issue: Cancer Vaccines - Review

Strategies used for MUC1 immunotherapy: preclinical studies

&
Pages 951-962 | Published online: 09 Jan 2014

References

  • Proceedings of the International Society for Oncodevelopmental Biology and Medicine (ISOBM) TD-4 International Workshop on Monoclonal Antibodies against MUC1. San Diego, California, November 17–23, 1996. Tumour Biol.19(Suppl. 1), 1–152 (1998).
  • Price MR, Rye PD, Petrakou E et al. Summary report on the ISOBM TD-4 workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17–23, 1996. Tumour Biol.19(Suppl. 1), 1–20 (1998).
  • McGuckin MA. CD227 (MUC1) – summary and workshop report. In: Leucocyte Typing VII. Mason D (Ed.). Oxford University Press, Oxford, UK 54–56 (2001).
  • Apostolopoulos V, McKenzie IF. Cellular mucins: targets for immunotherapy. Crit. Rev. Immunol.14(3–4), 293–309 (1994).
  • Finn OJ, Jerome KR, Henderson RA et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev.145, 61–89 (1995).
  • Hull SR, Bright A, Carraway KL, Abe M, Hayes DF, Kufe DW. Oligosaccharide differences in the DF3 sialomucin antigen from normal human milk and the BT-20 human breast carcinoma cell line. Cancer Commun.1(4), 261–267 (1989).
  • Domenech N, Henderson RA, Finn OJ. Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J. Immunol.155(10), 4766–4774 (1995).
  • Jerome KR, Domenech N, Finn OJ. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. J. Immunol.151(3), 1654–1662 (1993).
  • Engelmann K, Shen H, Finn OJ. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res.68(7), 2419–2426 (2008).
  • Xing PX, Tjandra JJ, Stacker SA et al. Monoclonal antibodies reactive with mucin expressed in breast cancer. Immunol. Cell Biol.67(Pt 3), 183–195 (1989).
  • Xing PX, Reynolds K, Tjandra JJ, Tang XL, McKenzie IF. Synthetic peptides reactive with anti-human milk fat globule membrane monoclonal antibodies. Cancer Res.50(1), 89–96 (1990).
  • Apostolopoulos V, Haurum JS, McKenzie IF. MUC1 peptide epitopes associated with five different H-2 class I molecules. Eur. J. Immunol.27(10), 2579–2587 (1997).
  • Apostolopoulos V, Karanikas V, Haurum JS, McKenzie IF. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J. Immunol.159(11), 5211–5218 (1997).
  • Apostolopoulos V, Yuriev E, Ramsland PA et al. A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proc. Natl Acad. Sci. USA100(25), 15029–15034 (2003).
  • Xing PX, Prenzoska J, Quelch K, McKenzie IF. Second generation anti-MUC1 peptide monoclonal antibodies. Cancer Res.52(8), 2310–2317 (1992).
  • Xing PX, Tjandra JJ, Reynolds K, McLaughlin PJ, Purcell DF, McKenzie IF. Reactivity of anti-human milk fat globule antibodies with synthetic peptides. J. Immunol.142(10), 3503–3509 (1989).
  • Pietersz GA, Li W, Osinski C, Apostolopoulos V, McKenzie IF. Definition of MHC-restricted CTL epitopes from non-variable number of tandem repeat sequence of MUC1. Vaccine18(19), 2059–2071 (2000).
  • Gad M, Jensen T, Gagne R et al. MUC1-derived glycopeptide libraries with improved MHC anchors are strong antigens and prime mouse T cells for proliferative responses to lysates of human breast cancer tissue. Eur. J. Immunol.33(6), 1624–1632 (2003).
  • Sorensen AL, Reis CA, Tarp MA et al. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology16(2), 96–107 (2006).
  • Stepensky D, Tzehoval E, Vadai E, Eisenbach L. O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma. Clin. Exp. Immunol.143(1), 139–149 (2006).
  • Apostolopoulos V, Xing PX, McKenzie IF. Murine immune response to cells transfected with human MUC1: immunization with cellular and synthetic antigens. Cancer Res.54(19), 5186–5193 (1994).
  • Sheng KC, Pietersz GA, Wright MD, Apostolopoulos V. Dendritic cells: activation and maturation – applications for cancer immunotherapy. Curr. Med. Chem.12(15), 1783–1800 (2005).
  • Apostolopoulos V, Barnes N, Pietersz GA, McKenzie IF. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine18(27), 3174–3184 (2000).
  • Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc. Natl Acad. Sci. USA92(22), 10128–10132 (1995).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine14(9), 930–938 (1996).
  • Apostolopoulos V, Pietersz GA, Xing PX et al. The immunogenicity of MUC1 peptides and fusion protein. Cancer Lett.90(1), 21–26 (1995).
  • Apostolopoulos V, Pouniotis DS, van Maanen PJ et al. Delivery of tumor associated antigens to antigen presenting cells using penetratin induces potent immune responses. Vaccine24(16), 3191–3202 (2006).
  • Lees CJ, Apostolopoulos V, Acres B, Ong CS, Popovski V, McKenzie IF. The effect of T1 and T2 cytokines on the cytotoxic T cell response to mannan-MUC1. Cancer Immunol. Immunother.48(11), 644–652 (2000).
  • Lees CJ, Apostolopoulos V, Acres B et al. Immunotherapy with mannan-MUC1 and IL-12 in MUC1 transgenic mice. Vaccine19(2–3), 158–162 (2000).
  • McKenzie IF, Apostolopoulos V, Lees C et al. Oxidised mannan antigen conjugates preferentially stimulate T1 type immune responses. Vet. Immunol. Immunopathol.63(1–2), 185–190 (1998).
  • Apostolopoulos V, Pietersz GA, Gordon S, Martinez-Pomares L, McKenzie IF. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur. J. Immunol.30(6), 1714–1723 (2000).
  • Sheng KC, Pouniotis DS, Wright MD et al. Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology118(3), 372–383 (2006).
  • Acres B, Apostolopoulos V, Balloul JM et al. MUC1-specific immune responses in human MUC1 transgenic mice immunized with various human MUC1 vaccines. Cancer Immunol. Immunother.48(10), 588–594 (2000).
  • Tang C-K, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev. Vaccines7(7), 963–975 (2008).
  • Harris JR, Markl J. Keyhole limpet hemocyanin (KLH): a biomedical review. Micron30(6), 597–623 (1999).
  • Ding L, Lalani EN, Reddish M et al. Immunogenicity of synthetic peptides related to the core peptide sequence encoded by the human MUC1 mucin gene: effect of immunization on the growth of murine mammary adenocarcinoma cells transfected with the human MUC1 gene. Cancer Immunol. Immunother.36(1), 9–17 (1993).
  • Ragupathi G, Gathuru J, Livingston P. Antibody inducing polyvalent cancer vaccines. Cancer Treat. Res.123, 157–180 (2005).
  • Zhang H, Zhang S, Cheung NK, Ragupathi G, Livingston PO. Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastases. Cancer Res.58(13), 2844–2849 (1998).
  • Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1–KLH and GD3–KLH conjugate cancer vaccines. Vaccine18(7–8), 597–603 (1999).
  • Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1–KLH and GD3–KLH conjugates. Vaccine19(4–5), 530–537 (2000).
  • Ragupathi G, Cappello S, Yi SS et al. Comparison of antibody titers after immunization with monovalent or tetravalent KLH conjugate vaccines. Vaccine20(7–8), 1030–1038 (2002).
  • Ragupathi G, Koide F, Sathyan N et al. A preclinical study comparing approaches for augmenting the immunogenicity of a heptavalent KLH-conjugate vaccine against epithelial cancers. Cancer Immunol. Immunother.52(10), 608–616 (2003).
  • Alving CR. Liposomal vaccines: clinical status and immunological presentation for humoral and cellular immunity. Ann. NY Acad. Sci.754, 143–152 (1995).
  • Sprott GD, Dicaire CJ, Gurnani K, Deschatelets LA, Krishnan L. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine22(17–18), 2154–2162 (2004).
  • Shahum E, Therien HM. Liposomal adjuvanticity: effect of encapsulation and surface-linkage on antibody production and proliferative response. Int. J. Immunopharmacol.17(1), 9–20 (1995).
  • Fortin A, Shahum E, Krzystyniak K, Therien HM. Differential activation of cell-mediated immune functions by encapsulated and surface-linked liposomal antigens. Cell. Immunol.169(2), 208–217 (1996).
  • Guan HH, Budzynski W, Koganty RR et al. Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug. Chem.9(4), 451–458 (1998).
  • Zhou F, Huang L. Monophosphoryl lipid A enhances specific CTL induction by a soluble protein antigen entrapped in liposomes. Vaccine11(11), 1139–1144 (1993).
  • Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm. Biotechnol.6, 495–524 (1995).
  • Lutsiak CM, Sosnowski DL, Wishart DS, Kwon GS, Samuel J. Use of a liposome antigen delivery system to alter immune responses in vivo. J. Pharm. Sci.87(11), 1428–1432 (1998).
  • Samuel J, Budzynski WA, Reddish MA et al. Immunogenicity and antitumor activity of a liposomal MUC1 peptide-based vaccine. Int. J. Cancer75(2), 295–302 (1998).
  • Mukherjee P, Madsen CS, Ginardi AR et al. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J. Immunother.26(1), 47–62 (2003).
  • Akporiaye ET, Bradley-Dunlop D, Gendler SJ et al. Characterization of the MUC1.Tg/MIN transgenic mouse as a model for studying antigen-specific immunotherapy of adenomas. Vaccine25(39–40), 6965–6974 (2007).
  • Mukherjee P, Pathangey LB, Bradley JB et al. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine25(9), 1607–1618 (2007).
  • Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J. Drug Target.11(8–10), 495–507 (2003).
  • Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine22(19), 2406–2412 (2004).
  • Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J. Immunother.30(4), 378–395 (2007).
  • Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M. Promising particle-based vaccines in cancer therapy. Expert Rev. Vaccines7(7), 1103–1121 (2008).
  • Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta1780(3), 546–563 (2008).
  • Tarp MA, Sorensen AL, Mandel U et al. Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology17(2), 197–209 (2007).
  • Napoletano C, Rughetti A, Agervig Tarp MP et al. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res.67(17), 8358–8367 (2007).
  • Ninkovic T, Hanisch FG. O-glycosylated human MUC1 repeats are processed in vitro by immunoproteasomes. J. Immunol.179(4), 2380–2388 (2007).
  • Graham RA, Burchell JM, Beverley P, Taylor-Papadimitriou J. Intramuscular immunisation with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic mouse tumour cells. Int. J. Cancer65(5), 664–670 (1996).
  • Plunkett T, Graham R, Correa I et al. Protection against MUC1 expressing mouse tumours by intra-muscular injection of MUC1 cDNA requires functional CD8+ and CD4+ T cells but does not require the MUC1 tandem repeat domain. Int. J. Cancer109(5), 691–697 (2004).
  • Johnen H, Kulbe H, Pecher G. Long-term tumor growth suppression in mice immunized with naked DNA of the human tumor antigen mucin (MUC1). Cancer Immunol. Immunother.50(7), 356–360 (2001).
  • Kamata M, Denda-Nagai K, Kubota N, Aida S, Takeda K, Irimura T. Vaccination of mice with MUC1 cDNA suppresses the development of lung metastases. Clin. Exp. Metastasis19(8), 689–696 (2002).
  • Snyder LA, Goletz TJ, Gunn GR et al. A MUC1/IL-18 DNA vaccine induces anti-tumor immunity and increased survival in MUC1 transgenic mice. Vaccine24(16), 3340–3352 (2006).
  • Shi FF, Gunn GR, Snyder LA, Goletz TJ. Intradermal vaccination of MUC1 transgenic mice with MUC1/IL-18 plasmid DNA suppresses experimental pulmonary metastases. Vaccine25(17), 3338–3346 (2007).
  • Pietersz GA, Tang CK, Apostolopoulos V. Structure and design of polycationic carriers for gene delivery. Mini Rev. Med. Chem.6(12), 1285–1298 (2006).
  • Tang CK, Lodding J, Minigo G et al. Mannan-mediated gene delivery for cancer immunotherapy. Immunology120(3), 325–335 (2007).
  • Tang CK, Lodding J, Minigo G et al. Oxidised and reduced mannan as receptor mediated gene delivery vehicles. Tissue Antigens66(5), 558 (2005).
  • Tang CK, Sheng KC, Pouniotis D et al. Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine26(31), 3827–3834 (2008).
  • Chu Y, Xia M, Lin Y et al. Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF. Cancer Gene Ther.13(5), 510–519 (2006).
  • Fong CL, Mok CL, Hui KM. Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression. Gene Ther.13(3), 245–256 (2006).
  • Jeon YH, Choi Y, Kim HJ et al. Human sodium iodide symporter gene adjunctive radiotherapy to enhance the preventive effect of hMUC1 DNA vaccine. Int. J. Cancer121(7), 1593–1599 (2007).
  • Zhang S, Zhang H, Shi H, Yu X, Kong W, Li W. Induction of immune response and anti-tumor activities in mice with a DNA vaccine encoding human mucin 1 variable-number tandem repeats. Hum. Immunol.69(4–5), 250–258 (2008).
  • Vasilevko V, Ghochikyan A, Sadzikava N et al. Immunization with a vaccine that combines the expression of MUC1 and B7 co-stimulatory molecules prolongs the survival of mice and delays the appearance of mouse mammary tumors. Clin. Exp. Metastasis20(6), 489–498 (2003).
  • Apostolopoulos V, Chelvanayagam G, Xing PX, McKenzie IF. Anti-MUC1 antibodies react directly with MUC1 peptides presented by class I H2 and HLA molecules. J. Immunol.161(2), 767–775 (1998).
  • Apostolopoulos V, McKenzie IF, Wilson IA. Getting into the groove: unusual features of peptide binding to MHC class I molecules and implications in vaccine design. Front Biosci.6, D1311–D1320 (2001).
  • Apostolopoulos V, Osinski C, McKenzie IF. MUC1 cross-reactive Gal α(1,3)Gal antibodies in humans switch immune responses from cellular to humoral. Nat. Med.4(3), 315–320 (1998).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. MUC1 and breast cancer. Curr. Opin. Mol. Ther.1(1), 98–103 (1999).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Studies of MUC1 peptides. In: eptide-Based Cancer Vaccines. Kast M (Ed.). Landes Bioscience, Chapman and Hall, FL, USA 106–120 (2000).
  • Apostolopoulos V, Sandrin MS, McKenzie IF. Mimics and cross reactions of relevance to tumour immunotherapy. Vaccine18(3–4), 268–275 (1999).
  • Apostolopoulos V, Yu M, Corper AL et al. Crystal structure of a non-canonical high affinity peptide complexed with MHC class I: a novel use of alternative anchors. J. Mol. Biol.318(5), 1307–1316 (2002).
  • Apostolopoulos V, Yu M, Corper AL et al. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. J. Mol. Biol.318(5), 1293–1305 (2002).
  • Apostolopoulos V, Yu M, McKenzie IF, Wilson IA. Structural implications for the design of molecular vaccines. Curr. Opin. Mol. Ther.2(1), 29–36 (2000).
  • Tatsumi T, Storkus WJ. Dendritic cell-based vaccines and therapies for cancer. Expert Opin. Biol. Ther.2(8), 919–928 (2002).
  • Rosenblatt J, Kufe D, Avigan D. Dendritic cell fusion vaccines for cancer immunotherapy. Expert Opin. Biol. Ther.5(5), 703–715 (2005).
  • Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat. Med.3(5), 558–561 (1997).
  • Gong J, Chen D, Kashiwaba M et al. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc. Natl Acad. Sci. USA95(11), 6279–6283 (1998).
  • Chen D, Xia J, Tanaka Y et al. Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells. Immunology109(2), 300–307 (2003).
  • Xia J, Tanaka Y, Koido S et al. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J. Immunol.170(4), 1980–1986 (2003).
  • Koido S, Tanaka Y, Chen D, Kufe D, Gong J. The kinetics of in vivo priming of CD4 and CD8 T cells by dendritic/tumor fusion cells in MUC1-transgenic mice. J. Immunol.168(5), 2111–2117 (2002).
  • Gong J, Apostolopoulos V, Chen D et al. Selection and characterization of MUC1-specific CD8+ T cells from MUC1 transgenic mice immunized with dendritic-carcinoma fusion cells. Immunology101(3), 316–324 (2000).
  • Tanaka Y, Koido S, Ohana M, Liu C, Gong J. Induction of impaired antitumor immunity by fusion of MHC class II-deficient dendritic cells with tumor cells. J. Immunol.174(3), 1274–1280 (2005).
  • Tanaka Y, Koido S, Chen D, Gendler SJ, Kufe D, Gong J. Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice. Clin. Immunol.101(2), 192–200 (2001).
  • Gong J, Koido S, Calderwood SK. Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Rev. Vaccines7(7), 1055–1068 (2008).
  • Akagi J, Hodge JW, McLaughlin JP et al. Therapeutic antitumor response after immunization with an admixture of recombinant vaccinia viruses expressing a modified MUC1 gene and the murine T-cell costimulatory molecule B7. J. Immunother.20(1), 38–47 (1997).
  • Acres RB, Hareuveni M, Balloul JM, Kieny MP. Vaccinia virus MUC1 immunization of mice: immune response and protection against the growth of murine tumors bearing the MUC1 antigen. J. Immunother. Emphasis Tumor Immunol.14(2), 136–143 (1993).
  • Acres B, Bonnefoy J-Y. Clinical development of MVA-based therapeutic cancer vaccines. Expert Rev. Vaccines7(7), 889–893 (2008).
  • Rubinstein DB, Karmely M, Ziv R et al. MUC1/X protein immunization enhances cDNA immunization in generating anti-MUC1 α/β junction antibodies that target malignant cells. Cancer Res.66(23), 11247–11253 (2006).
  • Danielczyk A, Stahn R, Faulstich D et al. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol. Immunother.55(11), 1337–1347 (2006).
  • Gelbard A, Garnett CT, Abrams SI et al. Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis. Clin. Cancer Res.12(6), 1897–1905 (2006).
  • Soares MM, Mehta V, Finn OJ. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J. Immunol.166(11), 6555–6563 (2001).
  • Li D, Li H, Zhang P et al. Heat shock fusion protein induces both specific and nonspecific anti-tumor immunity. Eur. J. Immunol.36(5), 1324–1336 (2006).
  • Lofthouse SA, Apostolopoulos V, Pietersz GA, Li W, McKenzie IF. Induction of T1 (cytotoxic lymphocyte) and/or T2 (antibody) responses to a mucin-1 tumour antigen. Vaccine15(14), 1586–1593 (1997).
  • Chung MA, Luo Y, O’Donnell M et al. Development and preclinical evaluation of a Bacillus Calmette–Guerin-MUC1-based novel breast cancer vaccine. Cancer Res.63(6), 1280–1287 (2003).
  • Gathuru JK, Koide F, Ragupathi G et al. Identification of DHBcAg as a potent carrier protein comparable to KLH for augmenting MUC1 antigenicity. Vaccine23(39), 4727–4733 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.