83
Views
19
CrossRef citations to date
0
Altmetric
Review

Cutaneous leishmaniasis: progress towards a vaccine

, &
Pages 1277-1287 | Published online: 09 Jan 2014

References

  • Zijlstra EE, Musa AM, Khalil EA, el-Hassan IM, el-Hassan AM. Post-kalaazar dermal leishmaniasis. Lancet Infect. Dis.3(2), 87–98 (2003).
  • Desjeux P, Alvar J. Leishmania /HIV co-infections: epidemiology in Europe. Ann. Trop. Med. Parasitol.97(Suppl. 1), 3–15 (2003).
  • Cruz I, Morales MA, Noguer I, Rodriguez A, Alvar J. Leishmania in discarded syringes from intravenous drug users. Lancet359(9312), 1124–1125 (2002).
  • Dye C. The logic of visceral leishmaniasis control. Am. J. Trop. Med. Hyg.55(2), 125–130 (1996).
  • Reiner SL, Locksley RM. The regulation of immunity to Leishmania major . Annu. Rev. Immunol.13, 151–177 (1995).
  • Martinez JE, Valderrama L, Gama V, Leiby DA, Saravia NG. Clonal diversity in the expression and stability of the metastatic capability of Leishmania guyanensis in the golden hamster. J. Parasitol.86(4), 792–799 (2000).
  • Melby PC, Tryon VV, Chandrasekar B, Freeman GL. Cloning of Syrian hamster ( Mesocricetus auratus ) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect. Immun.66(5), 2135–2142 (1998).
  • Amaral VF, Teva A, Porrozzi R et al.Leishmania (Leishmania) major- infected rhesus macaques (Macaca mulatta) develop varying levels of resistance against homologous re-infections. Mem. Inst. Oswaldo Cruz96(6), 795–804 (2001).
  • Stober CB, Lange UG, Roberts MT et al. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection. Vaccine24(14), 2602–2616 (2006).
  • Khamesipour A, Rafati S, Davoudi N, Maboudi F, Modabber F. Leishmaniasis vaccine candidates for development: a global overview. Indian J. Med. Res.123(3), 423–438 (2006).
  • Khamesipour A, Dowlati Y, Asilian A et al. Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine23(28), 3642–3648 (2005).
  • Tacket CO, Cohen MB, Wasserman SS et al. Randomized, double-blind, placebo-controlled, multicentered trial of the efficacy of a single dose of live oral cholera vaccine CVD 103-HgR in preventing cholera following challenge with Vibrio cholerae O1 El Tor Inaba three months after vaccination. Infect. Immun.67(12), 6341–6345 (1999).
  • Spath GF, Epstein L, Leader B et al. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major . Proc.Natl Acad. Sci. USA97(16), 9258–9263 (2000).
  • Spath GF, Lye LF, Segawa H, Sacks DL, Turco SJ, Beverley SM. Persistence without pathology in phosphoglycan-deficient Leishmania major . Science301(5637), 1241–1243 (2003).
  • Uzonna JE, Spath GF, Beverley SM, Scott P. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J. Immunol.172(6), 3793–3797 (2004).
  • Spath GF, Lye LF, Segawa H, Turco SJ, Beverley SM. Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Infect. Immun.72(6), 3622–3627 (2004).
  • Ilg T, Demar M, Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J. Biol. Chem.276(7), 4988–4997 (2001).
  • Alexander J, Coombs GH, Mottram JC. Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J. Immunol.161(12), 6794–6801 (1998).
  • Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM. Development of a safe live Leishmania vaccine line by gene replacement. Proc. Natl Acad. Sci. USA92(22), 10267–10271 (1995).
  • Veras P, Brodskyn C, Balestieri F et al. A dhfr-ts Leishmania major knockout mutant cross-protects against Leishmania amazonensis . Mem. Inst. Oswaldo Cruz.94(4), 491–496 (1999).
  • Brodskyn C, Beverley SM, Titus RG. Virulent or avirulent (dhfr-ts-) Leishmania major elicit predominantly a type-1 cytokine response by human cells in vitro . Clin. Exp. Immunol.119(2), 299–304 (2000).
  • Amaral VF, Teva A, Oliveira-Neto MP et al. Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Mem. Inst. Oswaldo Cruz97(7), 1041–1048 (2002).
  • Davoudi N, Tate CA, Warburton C, Murray A, Mahboudi F, McMaster WR. Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine23(9), 1170–1177 (2005).
  • Howard JG, Liew FY, Hale C, Nicklin S. Prophylactic immunization against experimental leishmaniasis. II. Further characterization of the protective immunity against fatal Leishmania tropica infection induced by irradiated promastigotes. J. Immunol.132(1), 450–455 (1984).
  • Gicheru MM, Olobo JO, Anjili CO, Orago AS, Modabber F, Scott P. Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infect. Immun.69(1), 245–251 (2001).
  • Mayrink W, Genaro O, Silva JC et al. Phase I and II open clinical trials of a vaccine against Leishmania chagasi infections in dogs. Mem. Inst. Oswaldo Cruz91(6), 695–697 (1996).
  • Mohebali M, Khamesipour A, Mobedi I, Zarei Z, Hashemi-Fesharki R. Double-blind randomized efficacy field trial of alum precipitated autoclaved Leishmania major vaccine mixed with BCG against canine visceral leishmaniasis in Meshkin-Shahr district, I.R. Iran. Vaccine22(29–30), 4097–4100 (2004).
  • Mayrink W, Williams P, Coelho MV et al. Epidemiology of dermal leishmaniasis in the Rio Doce Valley, State of Minas Gerais, Brazil. Ann. Trop. Med. Parasitol.73(2), 123–137 (1979).
  • Mayrink W, da Costa CA, Magalhaes PA et al. A field trial of a vaccine against American dermal leishmaniasis. Trans. R. Soc. Trop. Med. Hyg.73(4), 385–387 (1979).
  • Armijos RX, Weigel MM, Calvopina M, Hidalgo A, Cevallos W, Correa J. Safety, immunogenecity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis. Vaccine22(9–10), 1320–1326 (2004).
  • Velez ID, Gilchrist K, Arbelaez MP et al. Failure of a killed Leishmania amazonensis vaccine against American cutaneous leishmaniasis in Colombia. Trans. R. Soc. Trop. Med. Hyg.99(8), 593–598 (2005).
  • Armijos RX, Weigel MM, Romero L, Garcia V, Salazar J. Field trial of a vaccine against New World cutaneous leishmaniasis in an at-risk child population: how long does protection last? J. Infect Dis.187(12), 1959–1961 (2003).
  • Sharifi I, FeKri AR, Aflatonian MR et al. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet351(9115), 1540–1543 (1998).
  • Momeni AZ, Jalayer T, Emamjomeh M et al. A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine17(5), 466–472 (1999).
  • Khalil EA, El Hassan AM, Zijlstra EE et al. Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet356(9241), 1565–1569 (2000).
  • Handman E, Mitchell GF. Immunization with Leishmania receptor for macrophages protects mice against cutaneous leishmaniasis. Proc. Natl Acad. Sci. USA82(17), 5910–5914 (1985).
  • Walker PS, Scharton-Kersten T, Rowton ED et al. Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Hum. Gene Ther.9(13), 1899–1907 (1998).
  • Spitzer N, Jardim A, Lippert D, Olafson RW. Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine17(11–12), 1298–1300 (1999).
  • Russell DG, Alexander J. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. J. Immunol.140(4), 1274–1279 (1988).
  • Abdelhak S, Louzir H, Timm J et al. Recombinant BCG expressing the Leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology141(Pt 7), 1585–1592 (1995).
  • Connell ND, Medina-Acosta E, McMaster WR, Bloom BR, Russell DG. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette–Guerin expressing the Leishmania surface proteinase gp63. Proc. Natl Acad. Sci. USA90(24), 11473–11477 (1993).
  • Yang DM, Fairweather N, Button LL, McMaster WR, Kahl LP, Liew FY. Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J. Immunol.145(7), 2281–2285 (1990).
  • Xu D, McSorley SJ, Chatfield SN, Dougan G, Liew FY. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium ( aroA- aroD- ). Immunology85(1), 1–7 (1995).
  • McSorley SJ, Xu D, Liew FY. Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infect. Immun.65(1), 171–178 (1997).
  • Gonzalez CR, Noriega FR, Huerta S et al. Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania mexicana mexicana . Vaccine16(9–10), 1043–1052 (1998).
  • Handman E, Button LL, McMaster RW. Leishmania major : production of recombinant gp63, its antigenicity and immunogenicity in mice. Exp. Parasitol.70(4), 427–435 (1990).
  • Xu D, Liew FY. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major . Immunology84(2), 173–176 (1995).
  • Dumonteil E, Maria Jesus RS, Javier EO, Maria del Rosario GM. DNA vaccines induce partial protection against Leishmania mexicana . Vaccine21(17–18), 2161–2168 (2003).
  • Dumonteil E, Andrade-Narvarez F, Escobedo-Ortegon J et al. Comparative study of DNA vaccines encoding various antigens against Leishmania mexicana . Dev. Biol. (Basel)104, 135–141 (2000).
  • Ahmed SB, Bahloul C, Robbana C, Askri S, Dellagi K. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major . Vaccine22(13–14), 1631–1639 (2004).
  • Launois P, Maillard I, Pingel S et al. IL-4 rapidly produced by V β 4 V α 8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity6(5), 541–549 (1997).
  • Julia V, Glaichenhaus N. CD4+ T cells which react to the Leishmania major LACK antigen rapidly secrete interleukin-4 and are detrimental to the host in resistant B10.D2 mice. Infect. Immun.67(7), 3641–3644 (1999).
  • Mougneau E, Altare F, Wakil AE et al. Expression cloning of a protective Leishmania antigen. Science268(5210), 563–566 (1995).
  • Gurunathan S, Sacks DL, Brown DR et al. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major . J. Exp. Med.186(7), 1137–1147 (1997).
  • Soussi N, Milon G, Colle JH, Mougneau E, Glaichenhaus N, Goossens PL. Listeria monocytogenes as a short-lived delivery system for the induction of type 1 cell-mediated immunity against the p36/LACK antigen of Leishmania major . Infect. Immun.68(3), 1498–1506 (2000).
  • Salay G, Dorta ML, Santos NM et al. Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis , the main causative agent of cutaneous leishmaniasis in the New World. Clin. Vaccine Immunol.14(9), 1173–1181 (2007).
  • Melby PC, Yang J, Zhao W, Perez LE, Cheng J. Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect. Immun.69(8), 4719–4725 (2001).
  • Rodriguez-Cortes A, Ojeda A, Lopez-Fuertes L et al. Vaccination with plasmid DNA encoding KMPII, TRYP, LACK and GP63 does not protect dogs against Leishmania infantum experimental challenge. Vaccine25(46), 7962–7971 (2007).
  • Marques-da-Silva EA, Coelho EA, Gomes DC et al. Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-γ production but does not protect BALB/c mice against Leishmania chagasi intravenous challenge. Parasitol. Res.98(1), 67–74 (2005).
  • Gonzalo RM, del Real G, Rodriguez JR et al. A heterologous prime–boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum p36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine20(7–8), 1226–1231 (2002).
  • Tapia E, Perez-Jimenez E, Lopez-Fuertes L, Gonzalo R, Gherardi MM, Esteban M. The combination of DNA vectors expressing IL-12 + IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes Infect.5(2), 73–84 (2003).
  • Lange UG, Mastroeni P, Blackwell JM, Stober CB. DNA– Salmonella enterica serovar Typhimurium primer–booster vaccination biases towards T helper 1 responses and enhances protection against Leishmania major infection in mice. Infect. Immun.72(8), 4924–4928 (2004).
  • Ramiro MJ, Zarate JJ, Hanke T et al. Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime–boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine21(19–20), 2474–2484 (2003).
  • Lopez-Fuertes L, Perez-Jimenez E, Vila-Coro AJ et al. DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine21(3–4), 247–257 (2002).
  • Pinto EF, Pinheiro RO, Rayol A, Larraga V, Rossi-Bergmann B. Intranasal vaccination against cutaneous leishmaniasis with a particulated leishmanial antigen or DNA encoding LACK. Infect. Immun.72(8), 4521–4527 (2004).
  • Gomes DC, Pinto EF, de Melo LD et al. Intranasal delivery of naked DNA encoding the LACK antigen leads to protective immunity against visceral leishmaniasis in mice. Vaccine25(12), 2168–2172 (2007).
  • Rafati S, Kariminia A, Seyde-Eslami S, Narimani M, Taheri T, Lebbatard M. Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon γ producing CD8+ T lymphocyte activation. Vaccine20(19–20), 2439–2447 (2002).
  • Zadeh-Vakili A, Taheri T, Taslimi Y, Doustdari F, Salmanian AH, Rafati S. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases type I (CPB) and type II (CPA), partially protects against leishmaniasis. Vaccine22(15–16), 1930–1940 (2004).
  • Rafati S, Salmanian AH, Taheri T, Vafa M, Fasel N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major . Vaccine19(25–26), 3369–3375 (2001).
  • Rafati S, Nakhaee A, Taheri T et al. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum . Vaccine23(28), 3716–3725 (2005).
  • Rafati S, Zahedifard F, Nazgouee F. Prime–boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine24(12), 2169–2175 (2006).
  • Rafati S, Zahedifard F, Azari MK, Taslimi Y, Taheri T. Leishmania infantum : prime boost vaccination with C-terminal extension of cysteine proteinase type I displays both type 1 and 2 immune signatures in BALB/c mice. Exp. Parasitol.118(3), 393–401 (2008).
  • Handman E, Symons FM, Baldwin TM, Curtis JM, Scheerlinck JP. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a Th1 type of immune response. Infect. Immun.63(11), 4261–4267 (1995).
  • Sjolander A, Baldwin TM, Curtis JM, Bengtsson KL, Handman E. Vaccination with recombinant parasite surface antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine16(20), 2077–2084 (1998).
  • McMahon-Pratt D, Rodriguez D, Rodriguez JR et al. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect. Immun.61(8), 3351–3359 (1993).
  • Handman E, Noormohammadi AH, Curtis JM, Baldwin T, Sjolander A. Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine18(26), 3011–3017 (2000).
  • de Carvalho LP, Soto M, Jeronimo S et al. Characterization of the immune response to Leishmania infantum recombinant antigens. Microbes Infect.5(1), 7–12 (2003).
  • Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J. Immunol.174(11), 7160–7171 (2005).
  • Solioz N, Blum-Tirouvanziam U, Jacquet R et al. The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine18(9–10), 850–859 (1999).
  • Chenik M, Louzir H, Ksontini H, Dilou A, Abdmouleh I, Dellagi K. Vaccination with the divergent portion of the protein histone H2B of Leishmania protects susceptible BALB/c mice against a virulent challenge with Leishmania major . Vaccine24(14), 2521–2529 (2006).
  • Carrion J, Folgueira C, Alonso C. Transitory or long-lasting immunity to Leishmania major infection: the result of immunogenicity and multicomponent properties of histone DNA vaccines. Vaccine26(9), 1155–1165 (2008).
  • Iborra S, Soto M, Carrion J, Alonso C, Requena JM. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine22(29–30), 3865–3876 (2004).
  • Soto M, Requena JM, Quijada L et al. During active viscerocutaneous leishmaniasis the anti-P2 humoral response is specifically triggered by the parasite P proteins. Clin. Exp. Immunol.100(2), 246–252 (1995).
  • Soto M, Requena JM, Quijada L, Guzman F, Patarroyo ME, Alonso C. Identification of the Leishmania infantum P0 ribosomal protein epitope in canine visceral leishmaniasis. Immunol. Lett.48(1), 23–28 (1995).
  • Iborra S, Soto M, Carrion J et al. The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/c mice. Infect. Immun.71(11), 6562–6572 (2003).
  • Iborra S, Carrion J, Anderson C, Alonso C, Sacks D, Soto M. Vaccination with the Leishmania infantum acidic ribosomal P0 protein plus CpG oligodeoxynucleotides induces protection against cutaneous leishmaniasis in C57BL/6 mice but does not prevent progressive disease in BALB/c mice. Infect. Immun.73(9), 5842–5852 (2005).
  • Iborra S, Abanades DR, Parody N et al. The immunodominant T helper 2 (Th2) response elicited in BALB/c mice by the Leishmania LiP2a and LiP2b acidic ribosomal proteins cannot be reverted by strong Th1 inducers. Clin. Exp. Immunol.150(2), 375–385 (2007).
  • Coler RN, Reed SG. Second-generation vaccines against leishmaniasis. Trends Parasitol.21(5), 244–249 (2005).
  • Campos-Neto A, Porrozzi R, Greeson K et al. Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infect. Immun.69(6), 4103–4108 (2001).
  • Campos-Neto A, Webb JR, Greeson K, Coler RN, Skeiky YA, Reed SG. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect. Immun.70(6), 2828–2836 (2002).
  • Skeiky YA, Kennedy M, Kaufman D et al. LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J. Immunol.161(11), 6171–6179 (1998).
  • Probst P, Skeiky YA, Steeves M, Gervassi A, Grabstein KH, Reed SG. A Leishmania protein that modulates interleukin (IL)-12, IL-10 and tumor necrosis factor-α production and expression of B7-1 in human monocyte-derived antigen-presenting cells. Eur. J. Immunol.27(10), 2634–2642 (1997).
  • Coler RN, Skeiky YA, Bernards K et al. Immunization with a polyprotein vaccine consisting of the T-cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect. Immun.70(8), 4215–4225 (2002).
  • Skeiky YA, Coler RN, Brannon M et al. Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine20(27–28), 3292–3303 (2002).
  • Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral leishmaniasis by elicitation of CD4+ T cells. Infect. Immun.75(9), 4648–4654 (2007).
  • Fujiwara RT, Vale AM, Franca da Silva JC et al. Immunogenicity in dogs of three recombinant antigens (TSA, LeIF and LmSTI1) potential vaccine candidates for canine visceral leishmaniasis. Vet. Res.36(5–6), 827–838 (2005).
  • Gradoni L, Foglia Manzillo V, Pagano A et al. Failure of a multi-subunit recombinant leishmanial vaccine (MML) to protect dogs from Leishmania infantum infection and to prevent disease progression in infected animals. Vaccine23(45), 5245–5251 (2005).
  • Badaro R, Lobo I, Munos A et al. Immunotherapy for drug-refractory mucosal leishmaniasis. J. Infect. Dis.194(8), 1151–1159 (2006).
  • Flohe SB, Bauer C, Flohe S, Moll H. Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major . Eur. J. Immunol.28(11), 3800–3811 (1998).
  • von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti- Leishmania immunity. J. Exp. Med.188(8), 1547–1552 (1998).
  • Ahuja SS, Reddick RL, Sato N et al. Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. J. Immunol.163(7), 3890–3897 (1999).
  • Berberich C, Ramirez-Pineda JR, Hambrecht C, Alber G, Skeiky YA, Moll H. Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. J. Immunol.170(6), 3171–3179 (2003).
  • Tsagozis P, Karagouni E, Dotsika E. Dendritic cells pulsed with peptides of gp63 induce differential protection against experimental cutaneous leishmaniasis. Int. J. Immunopathol. Pharmacol.17(3), 343–352 (2004).
  • Carrion J, Folgueira C, Alonso C. Immunization strategies against visceral leishmaniosis with the nucleosomal histones of Leishmania infantum encoded in DNA vaccine or pulsed in dendritic cells. Vaccine26(20), 2537–2544 (2008).
  • Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science239(4845), 1306–1308 (1988).
  • Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science290(5495), 1351–1354 (2000).
  • de Moura TR, Oliveira F, Novais FO et al. Enhanced Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLoS Negl. Trop. Dis.1(2), e84 (2007).
  • Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J. Immunol.167(9), 5226–5230 (2001).
  • Valenzuela JG, Belkaid Y, Garfield MK et al. Toward a defined anti- Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J. Exp. Med.194(3), 331–342 (2001).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.