139
Views
30
CrossRef citations to date
0
Altmetric
Review

Cellular and molecular mechanisms of memory T-cell survival

, , , , , , & show all
Pages 299-312 | Published online: 09 Jan 2014

References

  • Dutton RW, Bradley LM, Swain SL. T cell memory. Annu. Rev. Immunol.16, 201–223 (1998).
  • Combadiere B, Boissonnas A, Carcelain G et al. Distinct time effects of vaccination on long-term proliferative and IFN-γ-producing T cell memory to smallpox in humans. J. Exp. Med.199(11), 1585–1593 (2004).
  • Courtois G. [Duration of immunity after yellow fever vaccination]. Ann. Soc. Belg. Med. Trop. (1920)34(1), 9–12 (1954).
  • Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K. Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull. World Health Organ.59(6), 895–900 (1981).
  • Sant AJ, Chaves FA, Krafcik FR et al. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev. Vaccines6(3), 357–368 (2007).
  • Wrammert J, Ahmed R. Maintenance of serological memory. Biol. Chem.389(5), 537–539 (2008).
  • Sabbagh L, Kaech SM, Bourbonniere M et al. The selective increase in caspase-3 expression in effector but not memory T cells allows susceptibility to apoptosis. J. Immunol.173(9), 5425–5433 (2004).
  • Diaz-Guerra E, Vernal R, del Prete MJ, Silva A, Garcia-Sanz JA. CCL2 inhibits the apoptosis program induced by growth factor deprivation, rescuing functional T cells. J. Immunol.179(11), 7352–7357 (2007).
  • Weant AE, Michalek RD, Khan IU, Holbrook BC, Willingham MC, Grayson JM. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity28(2), 218–230 (2008).
  • Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol.2(5), 415–422 (2001).
  • Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity27(3), 393–405 (2007).
  • Murali-Krishna K, Altman JD, Suresh M et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8(2), 177–187 (1998).
  • Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl Acad. Sci. USA103(9), 3304–3309 (2006).
  • Rivino L, Messi M, Jarrossay D, Lanzavecchia A, Sallusto F, Geginat J. Chemokine receptor expression identifies pre-T helper (Th)1, pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J. Exp. Med.200(6), 725–735 (2004).
  • Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science286(5443), 1377–1381 (1999).
  • Goldrath AW, Sivakumar PV, Glaccum M et al. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med.195(12), 1515–1522 (2002).
  • Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol.4(12), 1191–1198 (2003).
  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature420(6915), 502–507 (2002).
  • Kieper WC, Tan JT, Bondi-Boyd B et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med.195(12), 1533–1539 (2002).
  • Becker TC, Wherry EJ, Boone D et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med.195(12), 1541–1548 (2002).
  • Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol.1(5), 426–432 (2000).
  • King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell117(2), 265–277 (2004).
  • Barber DL, Wherry EJ, Ahmed R. Cutting edge: rapid in vivo killing by memory CD8 T cells. J. Immunol.171(1), 27–31 (2003).
  • Wherry EJ, Teichgraber V, Becker TC et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol.4(3), 225–234 (2003).
  • Kersh EN, Fitzpatrick DR, Murali-Krishna K et al. Rapid demethylation of the IFN-γ gene occurs in memory but not naive CD8 T cells. J. Immunol.176(7), 4083–4093 (2006).
  • Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat. Rev. Immunol.2(12), 933–944 (2002).
  • Manders PM, Hunter PJ, Telaranta AI et al. BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc. Natl Acad. Sci. USA102(21), 7418–7425 (2005).
  • Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol.22, 745–763 (2004).
  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401(6754), 708–712 (1999).
  • Hazenberg MD, Otto SA, Hamann D et al. Depletion of naive CD4 T cells by CXCR4-using HIV-1 variants occurs mainly through increased T-cell death and activation. AIDS17(10), 1419–1424 (2003).
  • Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291(5512), 2413–2417 (2001).
  • Willinger T, Freeman T, Hasegawa H, McMichael AJ, Callan MF. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol.175(9), 5895–5903 (2005).
  • Bouneaud C, Garcia Z, Kourilsky P, Pannetier C. Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J. Exp. Med.201(4), 579–590 (2005).
  • Castiglioni P, Gerloni M, Zanetti M. Genetically programmed B lymphocytes are highly efficient in inducing anti-virus protective immunity mediated by central memory CD8 T cells. Vaccine23(5), 699–708 (2004).
  • Klebanoff CA, Gattinoni L, Torabi-Parizi P et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA102(27), 9571–9576 (2005).
  • Wu CY, Kirman JR, Rotte MJ et al. Distinct lineages of Th1 cells have differential capacities for memory cell generation in vivo. Nat. Immunol.3(9), 852–858 (2002).
  • Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat. Med.10(10), 1104–1110 (2004).
  • Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood101(11), 4260–4266 (2003).
  • Gauduin MC, Yu Y, Barabasz A et al. Induction of a virus-specific effector-memory CD4+ T cell response by attenuated SIV infection. J. Exp. Med.203(12), 2661–2672 (2006).
  • Riou C, Yassine-Diab B, Van Grevenynghe J et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med.204(1), 79–91 (2007).
  • Romero P, Zippelius A, Kurth I et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol.178(7), 4112–4119 (2007).
  • Monteiro M, Evaristo C, Legrand A, Nicoletti A, Rocha B. Cartography of gene expression in CD8 single cells: novel CCR7-subsets suggest differentiation independent of CD45RA expression. Blood109(7), 2863–2870 (2007).
  • Tough DF. Deciphering the relationship between central and effector memory CD8+ T cells. Trends Immunol.24(8), 404–407 (2003).
  • Hu H, Huston G, Duso D, Lepak N, Roman E, Swain SL. CD4+ T cell effectors can become memory cells with high efficiency and without further division. Nat. Immunol.2(8), 705–710 (2001).
  • Farber DL. Differential TCR signaling and the generation of memory T cells. J. Immunol.160(2), 535–539 (1998).
  • Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat. Immunol.4(4), 355–360 (2003).
  • Huster KM, Koffler M, Stemberger C, Schiemann M, Wagner H, Busch DH. Unidirectional development of CD8+ central memory T cells into protective Listeria-specific effector memory T cells. Eur J. Immunol.36(6), 1453–1464 (2006).
  • Schwendemann J, Choi C, Schirrmacher V, Beckhove P. Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J. Immunol.175(3), 1433–1439 (2005).
  • Chang JT, Palanivel VR, Kinjyo I et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science315(5819), 1687–1691 (2007).
  • Reiner SL, Sallusto F, Lanzavecchia A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science317(5838), 622–625 (2007).
  • Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol.19(3), 281–286 (2007).
  • Intlekofer AM, Takemoto N, Kao C et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med.204(9), 2015–2021 (2007).
  • Rhyu MS, Jan LY, Jan YN. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell76(3), 477–491 (1994).
  • Lee CY, Andersen RO, Cabernard C et al.Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev.20(24), 3464–3474 (2006).
  • Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev.20(24), 3453–3463 (2006).
  • Chiba S. Notch signaling in stem cell systems. Stem Cells24(11), 2437–2447 (2006).
  • Spana EP, Kopczynski C, Goodman CS, Doe CQ. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development121(11), 3489–3494 (1995).
  • Anderson AC, Kitchens EA, Chan SW et al. The Notch regulator Numb links the Notch and TCR signaling pathways. J. Immunol.174(2), 890–897 (2005).
  • Luty WH, Rodeberg D, Parness J, Vyas YM. Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates. J. Immunol.179(2), 819–829 (2007).
  • Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol.2(4), 251–262 (2002).
  • Sprent J, Cho JH, Boyman O, Surh CD. T cell homeostasis. Immunol. Cell. Biol.86(4), 312–319 (2008).
  • Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med.195(12), 1523–1532 (2002).
  • Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM. Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med.198(12), 1797–1806 (2003).
  • Seddon B, Tomlinson P, Zamoyska R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol.4(7), 680–686 (2003).
  • Swain SL, Hu H, Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science286(5443), 1381–1383 (1999).
  • Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol. Rev.191, 107–118 (2003).
  • Kassiotis G, Garcia S, Simpson E, Stockinger B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat. Immunol.3(3), 244–250 (2002).
  • Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J. Immunol.171(10), 5165–5171 (2003).
  • Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCRζ chain. Cell71(4), 649–662 (1992).
  • Bubeck Wardenburg J, Fu C, Jackman JK et al. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J Biol. Chem.271(33), 19641–19644 (1996).
  • Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell92(1), 83–92 (1998).
  • Jordan MS, Singer AL, Koretzky GA. Adaptors as central mediators of signal transduction in immune cells. Nat. Immunol.4(2), 110–116 (2003).
  • Kuo CT, Leiden JM. Transcriptional regulation of T lymphocyte development and function. Annu. Rev. Immunol.17, 149–187 (1999).
  • Krishnan S, Warke VG, Nambiar MP, Tsokos GC, Farber DL. The FcR γ subunit and Syk kinase replace the CD3ζ-chain and ZAP-70 kinase in the TCR signaling complex of human effector CD4 T cells. J. Immunol.170(8), 4189–4195 (2003).
  • Krishnan S, Warke VG, Nambiar MP, Wong HK, Tsokos GC, Farber DL. Generation and biochemical analysis of human effector CD4 T cells: alterations in tyrosine phosphorylation and loss of CD3ζ expression. Blood97(12), 3851–3859 (2001).
  • Hussain SF, Anderson CF, Farber DL. Differential SLP-76 expression and TCR-mediated signaling in effector and memory CD4 T cells. J. Immunol.168(4), 1557–1565 (2002).
  • Farber DL, Acuto O, Bottomly K. Differential T cell receptor-mediated signaling in naive and memory CD4 T cells. Eur J. Immunol.27(8), 2094–2101 (1997).
  • Ahmadzadeh M, Hussain SF, Farber DL. Effector CD4 T cells are biochemically distinct from the memory subset: evidence for long-term persistence of effectors in vivo. J. Immunol.163(6), 3053–3063 (1999).
  • van Grevenynghe J, Procopio FA, He Z et al. Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nat. Med.14(3), 266–274 (2008).
  • Yang JY, Zong CS, Xia W et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat. Cell Biol.10(2), 138–148 (2008).
  • Khaled AR, Durum SK. Lymphocide: cytokines and the control of lymphoid homeostasis. Nat. Rev. Immunol.2(11), 817–830 (2002).
  • Migliaccio M, Alves PM, Romero P, Rufer N. Distinct mechanisms control human naive and antigen-experienced CD8+ T lymphocyte proliferation. J. Immunol.176(4), 2173–2182 (2006).
  • Schluns KS, Williams K, Ma A, Zheng XX, Lefrancois L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol.168(10), 4827–4831 (2002).
  • Mueller YM, Petrovas C, Bojczuk PM et al. Interleukin-15 increases effector memory CD8+ T cells and NK cells in simian immunodeficiency virus-infected macaques. J. Virol.79(8), 4877–4885 (2005).
  • Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD. Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med.204(4), 951–961 (2007).
  • Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell89(7), 1033–1041 (1997).
  • Blattman JN, Grayson JM, Wherry EJ, Kaech SM, Smith KA, Ahmed R. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med.9(5), 540–547 (2003).
  • Kaech SM, Hemby S, Kersh E, Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell111(6), 837–851 (2002).
  • Grayson JM, Zajac AJ, Altman JD, Ahmed R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol.164(8), 3950–3954 (2000).
  • Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol.25, 787–820 (2007).
  • Kohlmeier JE, Miller SC, Smith J et al. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity29(1), 101–113 (2008).
  • Oppermann M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell. Signal.16(11), 1201–1210 (2004).
  • Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood104(3), 619–625 (2004).
  • Ziegler E, Oberbarnscheidt M, Bulfone-Paus S, Forster R, Kunzendorf U, Krautwald S. CCR7 signaling inhibits T cell proliferation. J. Immunol.179(10), 6485–6493 (2007).
  • Ticchioni M, Essafi M, Jeandel PY et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene26(50), 7081–7091 (2007).
  • Walsh PT, Smith LM, O’Connor R. Insulin-like growth factor-1 activates Akt and Jun N-terminal kinases (JNKs) in promoting the survival of T lymphocytes. Immunology107(4), 461–471 (2002).
  • Congote LF. Monitoring insulin-like growth factors in HIV infection and AIDS. Clin. Chim. Acta361(1–2), 30–53 (2005).
  • Brennan FM, Smith NM, Owen S et al. Resting CD4+ effector memory T cells are precursors of bystander-activated effectors: a surrogate model of rheumatoid arthritis synovial T-cell function. Arthritis Res. Ther.10(2), R36 (2008).
  • Danielpour D, Song K. Cross-talk between IGF-I and TGF-β signaling pathways. Cytokine Growth Factor Rev.17(1–2), 59–74 (2006).
  • Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med.201(7), 1061–1067 (2005).
  • Alard P, Clark SL, Kosiewicz MM. Mechanisms of tolerance induced by TGF β-treated APC: CD4 regulatory T cells prevent the induction of the immune response possibly through a mechanism involving TGF β. Eur J. Immunol.34(4), 1021–1030 (2004).
  • Nakamura K, Kitani A, Fuss I et al. TGF-β 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol.172(2), 834–842 (2004).
  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2006).
  • Das L, Levine AD. TGF-β inhibits IL-2 production and promotes cell cycle arrest in TCR-activated effector/memory T cells in the presence of sustained TCR signal transduction. J. Immunol.180(3), 1490–1498 (2008).
  • Sudarshan C, Galon J, Zhou Y, O’Shea JJ. TGF-β does not inhibit IL-12- and IL-2-induced activation of Janus kinases and STATs. J. Immunol.162(5), 2974–2981 (1999).
  • Chabanon A, Desterke C, Rodenburger E et al. A CROSS-TALK between SDF-1 and TGF-β controls the quiescence/cycling switch of CD34+ progenitors through FoxO3 and mTOR. Stem Cells26(12), 3150–3161 (2008).
  • Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am. J. Pathol.152(2), 353–358 (1998).
  • Ashkar S, Weber GF, Panoutsakopoulou V et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science287(5454), 860–864 (2000).
  • Hur EM, Youssef S, Haws ME, Zhang SY, Sobel RA, Steinman L. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol.8(1), 74–83 (2007).
  • Shin H, Wherry EJ. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol.19(4), 408–415 (2007).
  • Ha SJ, West EE, Araki K, Smith KA, Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol. Rev.223, 317–333 (2008).
  • Blackburn SD, Shin H, Haining WN et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol.10(1), 29–37 (2009).
  • Trautmann L, Janbazian L, Chomont N et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med.12(10), 1198–1202 (2006).
  • Brenchley JM, Price DA, Schacker TW et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med.12(12), 1365–1371 (2006).
  • Petrovas C, Casazza JP, Brenchley JM et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med.203(10), 2281–2292 (2006).
  • Badr G, Bedard N, Abdel-Hakeem MS et al. Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. J. Virol.82(20), 10017–10031 (2008).
  • Esser MT, Marchese RD, Kierstead LS et al. Memory T cells and vaccines. Vaccine21(5–6), 419–430 (2003).
  • Fruman DA. Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Curr. Opin. Immunol.16(3), 314–320 (2004).
  • Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat. Rev. Immunol.8(8), 581–593 (2008).
  • Wang C, Wen T, Routy JP, Bernard NF, Sekaly RP, Watts TH. 4–1BBL induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T cells. J. Immunol.179(12), 8252–8263 (2007).
  • Kaufmann DE, Kavanagh DG, Pereyra F et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol.8(11), 1246–1254 (2007).
  • Hedlund G, Hansson J, Ericsson PO, Sjogren HO, Dohlsten M. Expression of CD11a and CD45R isoforms defines distinct subsets of CD8+ TCR αβ and TCR γδ CTL in vivo. Immunol. Rev.146, 82–94 (1995).
  • Hamann D, Baars PA, Rep MH et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med.186(9), 1407–1418 (1997).
  • Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol.17(3), 326–332 (2005).
  • Geginat J, Sallusto F, Lanzavecchia A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med.194(12), 1711–1719 (2001).
  • Yamada H, Matsuzaki G, Chen Q, Iwamoto Y, Nomoto K. Reevaluation of the origin of CD44high “memory phenotype” CD8 T cells: comparison between memory CD8 T cells and thymus-independent CD8 T cells. Eur. J. Immunol.31(6), 1917–1926 (2001).
  • Tough DF, Sun S, Zhang X, Sprent J. Stimulation of naive and memory T cells by cytokines. Immunol. Rev.170, 39–47 (1999).
  • Cohavy O, Targan SR. CD56 marks an effector T cell subset in the human intestine. J. Immunol.178(9), 5524–5532 (2007).
  • Pittet MJ, Speiser DE, Valmori D, Cerottini JC, Romero P. Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J. Immunol.164(3), 1148–1152 (2000).
  • Gupta S, Gollapudi S. CD95-mediated apoptosis in naive, central and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp. Gerontol.43(4), 266–274 (2008).
  • Cannons JL, Lau P, Ghumman B et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J. Immunol.167(3), 1313–1324 (2001).
  • Mackey MF, Barth RJ Jr, Noelle RJ. The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J. Leukoc. Biol.63(4), 418–428 (1998).
  • Ishii T, Ohnuma K, Murakami A et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc. Natl Acad. Sci. USA98(21), 12138–12143 (2001).
  • Slifka MK, Whitton JL. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J. Immunol.164(1), 208–216 (2000).
  • Holse M, Assing K, Poulsen LK. CCR3, CCR5, CCR8 and CXCR3 expression in memory T helper cells from allergic rhinitis patients, asymptomatically sensitized and healthy individuals. Clin. Mol. Allergy4, 6 (2006).
  • Nicholson JK, Browning SW, Hengel RL et al. CCR5 and CXCR4 expression on memory and naive T cells in HIV-1 infection and response to highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr.27(2), 105–115 (2001).
  • Fukada K, Sobao Y, Tomiyama H, Oka S, Takiguchi M. Functional expression of the chemokine receptor CCR5 on virus epitope-specific memory and effector CD8+ T cells. J. Immunol.168(5), 2225–2232 (2002).
  • Lepej SZ, Rode OD, Jeren T, Vince A, Remenar A, Barsic B. Increased expression of CXCR3 and CCR5 on memory CD4+ T-cells migrating into the cerebrospinal fluid of patients with neuroborreliosis: the role of CXCL10 and CXCL11. J. Neuroimmunol.163(1–2), 128–134 (2005).
  • Hutloff A, Dittrich AM, Beier KC et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature397(6716), 263–266 (1999).
  • Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol.8(3), 239–245 (2007).
  • Galvan M, Murali-Krishna K, Ming LL, Baum L, Ahmed R. Alterations in cell surface carbohydrates on T cells from virally infected mice can distinguish effector/memory CD8+ T cells from naive cells. J. Immunol.161(2), 641–648 (1998).
  • Harrington LE, Galvan M, Baum LG, Altman JD, Ahmed R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med.191(7), 1241–1246 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.