41
Views
12
CrossRef citations to date
0
Altmetric
Review

Stimulation of collateral artery growth: a potential treatment for peripheral artery disease

&
Pages 581-588 | Published online: 10 Jan 2014

References

  • Murray CJ, Lopez AD. Global mortality, disability and the contribution of risk factors: Global Burden of Disease Study. Lancet 349, 1436–1442 (1997).
  • Ouriel K Peripheral arterial disease. Lancet 358, 1257–1264 (2001).
  • Criqui MH, Langer RD, Fronek A et al Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl Med 326,381–386 (1992).
  • •Demonstrates the enormous impact of peripheral artery disease (PAD) on life expectancy.
  • Hiatt WR. Pharmacologic therapy for peripheral arterial disease and claudication. Vasc. &lg. 36,1283–1291 (2002).
  • Dean SM. Pharmacologic treatment for intermittent claudication. Vasc. Med.7, 301–309 (2002).
  • Molloy KJ, Nasim A, London NJ et al Percutaneous transluminal angioplasty in the treatment of critical limb ischemia. Endovasc. Ther. 10, 298-303 (2003).
  • Watson HR, Belcher G, Horrocks M. Reintervention as a clinical trial end point after peripheral arterial bypass surgery. Br J. Sing. 88,1376–1381 (2001).
  • Matsi PJ, Manninen HI, Soder HK, Mustonen P, Kouri J. Percutaneous transluminal angioplasty in femoral artery occlusions: primary and long-term results in 107 claudicant patients using femoral and popliteal catheterization techniques. Clin. Radial. 50,237–244 (1995).
  • Lower R Early science in Oxford. In: Oxfird. Oxford University Press, Oxford, UK (1932).
  • Fulton WME The Coronary Arteries. Charles C Thomas Publishers, IL, USA (1965).
  • ••Impressive monograph in which the authorunequivocally demonstrates the presence of pre-existing collateral anastomoses in the healthy human heart and the recruitment of these anastomoses in atherosclerotic disease.
  • Schaper W. On arteriogenesis — a reply. Basic Res. Cardial 98,183-184 (2003).
  • Risau W Mechanisms of angiogenesis. Nature 386,671–674 (1997).
  • Buschmann I, Schaper W Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physid Sci. 14,121–125. (1999).
  • van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc. Res. 49,543–553. (2001).
  • Helisch A, Schaper W Angiogenesis and arteriogenesis — not yet for prescription. Z Kardiol. 89,239–244 (2000).
  • Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am. Coll Cordial. 28,1652-1660 (1996).
  • Shyy YJ, Hsieh HJ, Usami S, Chien S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Nad Acta Sci. USA 91,4678–4682. (1994).
  • Randolph GJ, Furie MB. A soluble gradient of endogenous monocyte c.hemoattractant protein-1 promotes the transendothelial migration of monocytes in vitro. J Immunol. 155,3610–3618 (1995).
  • Scholz D, Ito W Fleming I et al Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virrhows Arch. 436,257–270 (2000).
  • Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb.j Clin. Invest. 101,40–50. (1998).
  • •One of the earliest publications in which arteriogenesis is described as a separate process to angiogenesis.
  • Cai WJ, Koltai S, Kocsis E et al. Remodeling of the adventitia during coronary arteriogenesis. Am. J. PhysioL Heart Circ. Physiol. 284, H31—H40 (2003).
  • Malik N, Greenfield BW, Wahl AF, Kiener PA. Activation of human monocytes through CD40 induces matrix metalloproteinases. J. Immunol. 156,3952–3960 (1996).
  • Hoefer IE, van Royen N, Rectenwald JE et al Direct evidence for tumor necrosis factor-a signaling in arteriogenesis. Circulation 105, 1639–1641 (2002).
  • Scholz D, Ziegelhoeffer T, Helisch A et al Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J MoL Cell Cordial. 34, 775–787 (2002).
  • Hoefer IE, Voskuil M, van Royen N. Arteriogenesis in mice. In: The Physiological Genomics of the Critically Ill Mouse. Ince C (Ed.), Kluwer Academic Publishers, MA, USA (2003).
  • Van Royen N, Voskuil M, Hoefer I et al. CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. Circulation 109(13), 1647–1652 (2004).
  • Hoefer IE, van Royen N, Buschmann IR, Piek JJ, Schaper W Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc. Res. 49, 609–617 (2001).
  • Deindl E, Buschmann I, Hoefer IE et al Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ. Res. 89, 779–786 (2001).
  • Pu LQ, Jackson S, Lachapelle KJ et al A persistent hindlimb ischemia model in the rabbit. J. Invest. Surg. 7, 49–60 (1994).
  • Buschmann IR, Voskuil M, van Royen N et al. Invasive and noninvasive evaluation of spontaneous arteriogenesis in a novel porcine model for peripheral arterial obstructive disease. Atherosclerosis 167,33-43 (2003).
  • Voskuil M, van Royen N, Hoefer IE et al Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am. J. Physid Heart Circ. Physiol. 284, H1422—H1428 (2003).
  • Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80,829–837 (1997).
  • •First report on the therapeutic modulation of collateral artery growth via attraction of monocytes to sites of vascular proliferation via exogenous application of monocyte chemoattractant protein-1.
  • van Royen N, Hoefer I, Buschmann I et al Effects of local MCP-1 protein therapy on the development of the collateral circulation and atherosclerosis in Watanabe-hyperlipidemic rabbits. Cardiovasc Res. 57, 178–185 (2003).
  • van Royen N, Hoefer I, Bottinger M et al. Local monocyte c. hemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic monocytic CD1 lb expression, neointimal formation and plaque progression. Circ. Res. 92,218–225 (2003).
  • Buschmann IR, Hoefer IE, van Royen N et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159,343-356 (2001).
  • Flad HD, Grage-Griebenow E, Scheuerer B et al. The role of cytokines in monocyte apoptosis. Res. Immunol. 149,733-736 (1998).
  • van Royen N, Hoefer I, Buschmann I et al Exogenous application of transforming growth factor-131 stimulates arteriogenesis in the peripheral circulation. Faseb J. 16, 432–434. (2002).
  • Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor-131 transcription and production. Modulation by potassium channel blockade./ Clin. Invest. 95, 1363-1369
  • Wahl SM, McCartney-Francis N, Allen JB, Dougherty EB, Dougherty SE Macrophage production of TGF-13 and regulation by TGF-13. Ann. 1VY Acad Sci. 593,188-196 (1990).
  • Boengler K, Pipp F, Fernandez B, Ziegelhoeffer T, Schaper W Deindl E. Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (CARP). Cardiovasc. Res. 59,573–581 (2003).
  • Epstein SE, Fuchs S, Thou YF, Baffour R,
  • Kornowski R Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc. Res. 49,532–542 (2001).
  • Deindl E, Hoefer IE, Fernandez B et al
  • Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res. 92,561–568 (2003).
  • Doukas J, Blease K, Craig D et al Delivery of
  • FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. MoL Ther. 5,517–527 (2002).
  • Ueno H, Li JJ, Masuda S, Qi Z, Yamamoto H, Takeshita A. Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb. Vasa Biol. 17, 2453–2460 (1997).
  • Yang HT, Deschenes MR, Ogilvie RW, Terjung RE. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ. Res. 79,62–69 (1996).
  • Rissanen TT, Markkanen JE, Arve K et al Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischaemia model. Faseb J. 17,100–102 (2003).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N EngL J. Med 285, 1182-1186 (1971).
  • Hershey JC, Baskin EP, Corcoran HA et al Vascular endothelial growth factor stimulates angiogenesis without improving collateral blood flow following hindlimb ischemia in rabbits. Heart Vessels 18,142–149 (2003).
  • Crottogini A, Meckert PC, Vera Janavel G et al. Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum. Gene Then 14, 1307–1318 (2003).
  • Heil M, Clauss M, Suzuki K et al Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression. Eur. J. Cell. Biol. 79, 850–857 (2000).
  • Pipp F, Heil M, Issbrucker K et al. VEGFR-1-selective VEGF homologue P1GF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003).
  • Asahara T, Masuda H, Takahashi T et al Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999).
  • Kburana R, Simons M. Endothelial progenitor cells: precursors for angiogenesis. Semin. Thorac. Cardiovasc. Surg. 15,250–258 (2003).
  • Kamihata H, Matsubara H, Nishiue T et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler. Thromb. Vasa Biol. 22, 1804–1810 (2002).
  • Barbash IM, Chouraqui P, Baron J et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration and body distribution. Circulation 108, 863–868 (2003).
  • Kamihata H, Matsubara H, Nishiue T et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands and cytokines. Circulation 104, 1046–1052 (2001).
  • Ross R, Harker L. Hyperlipidemia and atherosclerosis. Science 193,1094–1100 (1976).
  • Rehman J, Li J, Orschell CM, March KL. Peripheral blood 'endothelial progenitor cells' are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).
  • •Critically evaluates the endothelial progenitor cell theory and shows that these cells might well be derived from monocytes.
  • Ziegelhoeffer T, Scholz D, Friedrich C et al. Inhibition of collateral artery growth by mibefradil: possible role of volume-regulated chloride channels. Endothelium 10,237-246 (2003).
  • Isner JM, Pieczek A, Schainfeld R et al Clinical evidence of angiogenesis after arterial gene transfer of phVEGF 165 in patient with ischemic limb. Lancet 348, 370–374 (1996).
  • ••Reports the first use of vascularendothelial growth factor (VEGF) in patients, as a potential new treatment for peripheral artery disease.
  • Baumgartner I, Pieczek A, Manor 0 et al Constitutive expression of phVEGF 165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischaemia. Circulation 97, 1114–1123 (1998).
  • Mohler ER 3rd, Rajagopalan S, Olin JW et al. Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischaemia: safety results from a Phase I trial. Vasc. Med. 8,9-13 (2003).
  • Henry TD, Annex BH, McKendall GR et al. The VIVA Trial: Vascular endothelial growth factor in Ischaemia for Vascular Angiogenesis. Circulation 107,1359-1365 (2003).
  • Rajagopalan S, Mohler ER 3rd, Lederman RJ et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a Phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108,1933–1938 (2003).
  • ••Describes the first large randomizedcontrolled trial on the use of VEGF in patients with PAD. No significant change in peak walking exercise time was found.
  • Lazarous DF, Unger EF, Epstein SE et al. Basic fibroblast growth factor in patients with intermittent claudication: results of a Phase I trial. J. Am. Coll. Cardiol. 36, 1239–1244 (2000).
  • Cooper LT Jr, Hiatt WR, Creager MA et al Proteinuria in a placebo-controlled study of basic fibroblast growth factor for intermittent claudication. Vasc. Med. 6, 235–239 (2001).
  • Comerota AJ, Throm RC, Miller KA et al Naked plasmid DNA encoding fibroblast growth factor Type 1 for the treatment of end stage unreconstructible lower extremity ischemia: preliminary results of a Phase I trial. J. Vasc. Surg. 35,930–936 (2002).
  • Lederman RJ, Mendelsohn FO, Anderson RD et al Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomized trial. Lancet 359, 2053–2058 (2002).
  • Seiler C, Pohl T, Wustmann K et al Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 104,2012–2017 (2001).
  • ••Shows for the first time the efficacy ofmodulation of collateral artery growth in the clinical setting.
  • van Royen N, Piek JJ, Legemate DA et al Design of the START-trial: STimulation of ARTeriogenesis using subcutaneous application of GM-CSF as a new treatment for peripheral vascular disease. A randomized, double-blind, placebo-controlled trial. Vasc. Med 8,191–196 (2003).
  • Heil M, Ziegelhoeffer T, Mees B, Schaper W A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ. Res. 94,573–574 (2004).
  • Ziegelhoeffer T, Fernandez B, Kostin S et al Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94,230–238 (2004).
  • Tateishi-Yuyama E, Matsubara H, Murohara T et al Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360,427–435 (2002).
  • Simons M, Bonow RO, Chronos NA et al Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 102, E73—E86 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.