55
Views
21
CrossRef citations to date
0
Altmetric
Review

Genetics of inherited cardiomyopathies

&
Pages 683-697 | Published online: 10 Jan 2014

References

  • Richardson P, McKenna W Bristow M et al. Report of the 1995 World Health Organization/International Society and Federation of cardiology task force on the definition and classification of cardiomyopathies. Circulation 93(5), 841–842 (1996).
  • Cohn JN, Bristow MR, Chien KR et al Report of the National Heart, Lung, and Blood Institute Special Emphasis Panelon Heart Failure Research. Circulation 95(4), 76–80 (1997).
  • Boucek MM, Faro A, Novick RJ et al. The registry of the International Society for Heart and Lung Transplantation: fourth official pediatric report (2000). J. Heart Lung Transplant. 20(1), 39–52 (2001).
  • Towbin JA. Myocardial Disease. In: Pediatric Cardiovascular Medicine. Moller JH, Hoffmann JE (Eds), Churchill Livingstone, NY, USA 753–767 (2000).
  • Hunt SA, Baker DW, Chin MH et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. J. Heart Lung Transplant. 21(2), 189–203 (2002).
  • Codd MB, Sugrue DD, Gersh BJ, Melton LJd. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80(3), 564–572 (1989).
  • Arola A, Jokinen E, Ruuskanen 0 et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am. J. EpidemioL 146(5), 385–393 (1997).
  • Arola A, Tuominen J, Ruuskanen 0, Jokinen E. Idiopathic dilated cardiomyopathy in children: prognostic indicators and outcome. Pediatrics 101(3 Pt 1), 369–376 (1998).
  • Lipshultz SE, Sleeper LA, Towbin JA et alThe incidence of pediatric cardiomyopathy in two regions of the USA. N Eng1J. Med 348(17), 1647–1655 (2003).
  • •Detailed analysis of the incidence of pediatric cardiomyopathy in the USA.
  • Levin HR, Oz MC, Chen JM et al. Reversal of chronic ventricular dilation in patients with end stage cardiomyopathy by prolonged mechanical unloading. Circulation 91(11), 2717–2720 (1995).
  • Heiman DN, Maybaum SW Morales DL et al. Recurrent remodeling after ventricular assistance: is long-term myocardial recovery attainable? Ann. Thorac. Surg. 70(4), 1255–1258 (2000).
  • Nugent AW, Daubeney PEF, Chondros P et al. The epidemiology of childhood cardiomyopathy in Australia. N Eng1J. Med 348(17), 1639–1646 (2003).
  • •Detailed analysis of the incidence of pediatric cardiomyopathy in Australia.
  • Felker GM, Thompson RE, Hare JM et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Eng1J. Med. 342(15), 1077–1084 (2000).
  • •Comprehensive analysis of the underlying etiologies of cardiomyopathies and the relationship between the etiology and disease outcome.
  • Matitiau A, Perez-Atayde A, Sanders SP et al. Infantile dilated cardiomyopathy. Relation of outcome to left ventricular mechanics, hemodynamics, and histology at the time of presentation. Circulation 90(3), 1310–1318 (1994).
  • Towbin JA. Pediatric myocardial disease. Pediatr. Clin. North Am. 46(2), 289–312 (1999).
  • Towbin JA, Lipshultz SE. Genetics of neonatal cardiomyopathy. Curr. Opin. CardioL 14(3), 250–262 (1999).
  • Michels VV, Moll PP, Miller FA et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J. Med 326(2), 77–82 (1992).
  • Grunig E, Tasman JA, Kucherer H et al. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll CardioL 31(1), 186–194 (1998).
  • Kelly DR Strauss AW. Inherited cardiomyopathies. N Engl. J. Med. 330(13), 913–919 (1994).
  • Mestroni L, Krajinovic M, Severini GM et al. Molecular genetics of dilated cardiomyopathies. Eur. Heart J. 16(Suppl. 0), 5–9 (1995).
  • Keeling PJ, Gang Y, Smith G et al. Familial dilated cardiomyopathy in the United Kingdom. Br. Heart J. 73(5), 417–421 (1995).
  • Towbin JA, Bowles NE. The failing heart. Nature 415(6868), 227–233 (2002).
  • Towbin JA, Hejtmancik JF, Brink P et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87(6), 1854–1865 (1993).
  • •First gene identified for dilated cardiomyopathy.
  • Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6), 919–928 (1987).
  • Muntoni F, Cau M, Ganau A et al. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J. Med. 329(13), 921–925 (1993).
  • Milasin J, Muntoni F, Severini GM et al. A point mutation in the 5' splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum. MoL Genet. 5(1), 73–79 (1996).
  • Ortiz-Lopez R, Li H, Su J, Goytia V, Towbin JA. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation 95(10), 2434–2440 (1997).
  • Feng J, Yan J, Buzin C, Towbin J, Sommer S. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol. Genet. Metab. 77 (1–2),119 (2002).
  • Feng J, Yan JY, Buzin CH, Sommer SS, Towbin JA. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J. Am. Coll. CardioL 40(6), 1120–1124 (2002).
  • Bione S, D'Adamo P, Maestrini E et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nature Genet. 12(4), 385–389 (1996).
  • •Identification of the genetic cause of Barth Syndrome.
  • Barth PG, Scholte HR, Berden JA et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. NeuroL 62(1–3), 327–355 (1983).
  • Kelley RI, Cheatham JP, Clark BJ et al. X- linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J. Pediatr. 119(5), 738–747 (1991).
  • Schlame M, Towbin JA, Heerdt PM et al. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann. Neural. 51(5), 634–637 (2002).
  • Bione S, Maestrini E, Rivella S et al. Identification of a novel X-linked gene responsible for Emery—Dreifuss muscular dystrophy. Nature Genet. 8(4), 323–327 (1994).
  • Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280(5364), 750–752 (1998).
  • •Identification of the first gene for autosomal dominant dilated cardiomyopathy, confirming the link between the cardiomyocyte architecture and the disease.
  • Li D, Tapscoft T, Gonzalez 0 et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100(5), 461–464 (1999).
  • Tsubata S, Bowles KR, Vatta M et al. Mutations in the human g-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106(5), 655–662 (2000).
  • Barresi R, Di Blasi C, Negri T et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by /3-sarcoglycan mutations. J. Med. Genet. 37(2), 102–107 (2000).
  • Kamisago M, Sharma SD, DePalma SR et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N EngL J. Med. 343(23), 1688–1696 (2000).
  • Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of a-tropomyosin are associated with dilated cardiomyopathy. J. MoL Cell. CardioL 33(4), 723–732 (2001).
  • Gerull B, Gramlich M, Atherton J et al. Mutations of TT1V, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genet. 30(2), 201–204 (2002).
  • Olson TM, Illenberger S, Kishimoto NY et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105(4), 431–437 (2002).
  • Daehmlow S, Erdmann J, Knueppel T et al Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 298(1), 116-120(2002).
  • Schmitt JP, Kamisago M, Asahi M et al Dilated cardiomyopathy and heart failure caused by a mutation in phvholamban. Science 299(5611), 1410–1413 (2003).
  • ••Identification of a gene encoding an ionchannel associated with dilated cardiomyopathy and the first animal model expressing a human dilated cardiomyopathy (DCM) mutation.
  • Knoll R, Hoshijima M, Hoffman HM et al The cardiac mechanical stretch sensor machinery involves a Z-disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111(7), 943–955 (2002).
  • ••Identification of the role of the Z-disk as partof the cardiac mechanical stretch sensor and defects in this sensor as a cause of DCM.
  • Mohapatra B, Jimenez S, Lin JH et al Mutations in the Muscle LIM protein and a-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. MoL Genet. Metab. 80,207–215 (2003).
  • Vatta M, Mohapatra B, Jimenez S et al Mutations in cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. ColL CardioL 42, 2014–2027 (2003).
  • Arimura T, Hayashi T, Terada H et al A opher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J BioL Chem. 279(8), 6746–6752 (2003).
  • Mogensen J, Klausen IC, Pedersen AK et al a-cardiac actin is a novel disease gene in fmilial hypertrophic cardiomyopathy .j Clin. Invest. 103(10), R39—R43 (1999).
  • Morimoto S, Lu Q-W Harada K et al Ca2+- desensitizing effect of a deletion mutation 81{210 in cardiac troponin Tthat causes familial dilated cardiomyopathy. Proc. Nail Acad Sci. 022628899 (2002).
  • Thierfelder L, Watkins H, MacRae G et al tropomyosin and cardiac troponin Tmutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77(5), 701–712 (1994).
  • Murphy RT, Mogensen J, Shaw A et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 363(9406), 371–372 (2004).
  • Dalakas MC, Park KY, Semino-Mora C et al. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N EngL J. Med. 342(11), 770–780 (2000).
  • Goldfarb LG, Park KY, Cervenakova L et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nature Genet. 19(4), 402–403 (1998).
  • Munoz-Marmol AM, Strasser G, Isamat M et al. A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc. Nad Acad. Sci. USA 95(19), 11312–113127 (1998).
  • Sjoberg G, Saavedra-Matiz CA, Rosen DR et al. A missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation. Hum. MoL Genet. 8(12), 2191–2198 (1999).
  • Hack AA, Groh ME, McNally EM. Sarcoglycans in muscular dystrophy. Microsc. Res. Tech. 48(3–4), 167–180 (2000).
  • Arber S, Hunter JJ, Ross J Jr et al. MLP- deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88(3), 393–403 (1997).
  • Arber S, Haider G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79(2), 221–231 (1994).
  • Sadler I, Crawford AW, Michelsen JW, Beckerle MC. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J. Cell. BioL 119(6), 1573–1587 (1992).
  • Nix DA, Beckerle MC. Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell. BioL 138(5), 1139–1147 (1997).
  • Dubreuil RR Structure and evolution of the actin crosslinking proteins. Bioessays 13(5), 219–226 (1991).
  • Itoh-Satoh M, Hayashi T, Nishi H et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 291(2), 385–393 (2002).
  • Faulkner G, Pallavicini A, Formentin E et al. ZASP: a new Z-band alternatively spliced PDZ-motif protein. J. Cell. BioL 146(2), 465–475 (1999).
  • Blanchard A, Ohanian V, Critchley D. The structure and function of a-actinin. J. Muscle Res. CelL MotiL 10(4), 280–289 (1989).
  • Djinovic-Carugo K, Young P, Gautel M, Saraste M. Structure of the a-actinin rod: molecular basis for crosslinking of actin filaments. Cell 98(4), 537–546 (1999).
  • Moncman CL, Wang K Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. E. CelL Res. 273(2), 204–218 (2002).
  • Pashmforoush M, Pomies P, Peterson KL et al Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nature Med 7(5), 591-597(2001).
  • Bang ML, Mudry RE, McElhinny AS et al Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. j CelL BioL 153(2), 413–427 (2001).
  • Salmikangas P, van der Yen PF, Lalowski M et al Myotilin, the limb-girdle muscular dystrophy lA (LGMD1A) protein, crosslinks actin filaments and controls sarcomere assembly. Hum. MoL Genet. 12(2), 189–203 (2003).
  • Bellin RI\4, Huiatt TW, Critchley DR, Robson RM. Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. j BioL Chem. 276(34), 32330–32337 (2001).
  • Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature 407(6801), 221–226 (2000).
  • Hein S, Kostin S, Heling A, Maeno Y, Schaper J. The role of the cytoskeleton in heart failure. Cardiovasc. Res. 45(2), 273–278 (2000).
  • Fatkin D, MacRae C, Sasaki T et al Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N EngL J Med 341(23), 1715–1724 (1999).
  • •Identification of lamin A/C as one of the major genes underlying dilated cardiomyopathy associated with conduction disease.
  • Brodsky GL, Muntoni F, Miocic S et al Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101(5), 473–476 (2000).
  • Bienengraeber M, Olson TM, Selivanov VA et al ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nature Genet. 36(4), 382–387 (2004).
  • •Identification of the potential role of potassium channels in dilated cardiomyopathy associated with conduction disease.
  • Holt I, Ostlund C, Stewart CL et al Effect of pathogenic missense mutations in lamin A on its interaction with emerin in vivo. J CelL Sci. 116(14), 3027–3035 (2003).
  • Nikolova V, Leimena C, McMahon AC et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113(3), 357–369 (2004).
  • Sinagra G, Di Lenarda A, Brodsky GL et al. Current perspective new insights into the molecular basis of familial dilated cardiomyopathy. Ital. Heart J. 2(4), 280–286 (2001).
  • Chen R, Tsuji T, Ichida F et al. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Ma Genet. Metab. 77(4), 319–325 (2002).
  • Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82(2), 507–513 (1990).
  • Ichida F, Hamamichi Y, Miyawaki T et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J. Am. Coll. Cardiol 34(1), 233–240 (1999).
  • Bleyl SB, Mumford BR, Brown-Harrison MC et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am. J. Med. Genet. 72(3), 257–265 (1997).
  • Ichida F, Tsubata S, Bowles KR et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103(9), 1256–1263 (2001).
  • •Identification of the first gene for autosomal dominant left ventricular noncompaction.
  • Grady RI\4, Grange RW, Lau KS et al. Role for a-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nature Cell. Biol. 1(4), 215–220 (1999).
  • Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology 44(5), 412–427 (2004).
  • Maron BJ. Hypertrophic cardiomyopathy. Lancet 350(9071), 127–133 (1997).
  • Towbin JA. Molecular genetics of hypertrophic cardiomyopathy. Curr. Cardiol Rep. 2(2), 134–140 (2000).
  • Geisterfer-Lowrance AA, Kass S, Tanigawa G et al. A molecular basis for familial hypertrophic cardiomyopathy: a fl-cardiac myosin heavy chain gene missense mutation. Cell 62(5), 999–1006 (1990).
  • •First gene identified for hypertrophic cardiomyopathy.
  • Marian AJ, Salek L, Lutucuta S. Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med. 92(6), 435–451 (2001).
  • Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J. Mal Cell Cardia 33(4), 655–670 (2001).
  • Geier C, Perrot A, Ozcelik C et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107(10), 1390–1395 (2003).
  • Hayashi T, Arimura T, Ueda K et al Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 313(1), 178–184 (2004).
  • Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum. Mal Genet. 11(20), 2499–2506 (2002).
  • Ho CY, Lever HM, DeSanctis R et al Homozygous mutation in cardiac troponin implications for hypertrophic cardiomyopathy. Circulation 102(16), 1950–1955 (2000).
  • Richard P, Charron P, Carrier L et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107(17), 2227–2232 (2003).
  • •• Comprehensive mutation analysis of patients with hypertrophic cardiomyopathy, with the identification of individuals at high risk of severe disease and poor outcomes.
  • Arbustini E, Fasani R, Morbini P et al. Coexistence of mitochondrial DNA and /3-myosin heavy chain mutations in hypertrophic cardiomyopathy with late congestive heart failure. Heart 80(6), 548–558 (1998).
  • •Identification of both mitochondrial DNA and sarcomeric defects resulting in severe hypertrophic cardiomyopathy and poor disease outcome.
  • Satoh M, Takahashi M, Sakamoto T et al Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem. Biophys. Res. Commun. 262(2), 411–417 (1999).
  • Blair E, Redwood C, Ashrafian H et alMutations in the y2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mal Genet. 10(11), 1215–1220 (2001).
  • Gollob MH, Green MS, Tang AS-L et al. Identification of a gene responsible for familial Wolff—Parkinson—White syndrome. N Engl J. Med. 344(24), 1823–1831 (2001).
  • Campbell KP. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80(5), 675–679 (1995).
  • Cox GF, Kunkel LM. Dystrophies and heart disease. Curr. Opin. Cardiol 12(3), 329–343 (1997).
  • Nigro V, de Sa Moreira E, Piluso G et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the 8-sarcoglycan gene. Nature Genet. 14(2), 195–198 (1996).
  • Lim LE, Duclos F, Broux 0 et al fi-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nature Genet. 11(3), 257–265 (1995).
  • Bonne G, Di Barletta MR, Varnous S et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery—Dreifuss muscular dystrophy. Nature Genet. 21(3), 285–288 (1999).
  • Nowak KJ, Wattanasirichaigoon D, Goebel HH et al. Mutations in the skeletal muscle a-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genet. 23(2), 208–212 (1999).
  • Michele DE, Albayya FP, Metzger JM. A nemaline myopathy mutation in a-tropomyosin causes defective regulation of striated muscle force production. J. Clin. Invest. 104(11), 1575–1581 (1999).
  • D'Adamo P, Fassone L, Gedeon A et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet. 61(4), 862–867 (1997).
  • Carlsson L, Thornell LE. Desmin-related myopathies in mice and man. Acta. Physiol Scand. 171(3), 341–348 (2001).
  • Corrado D, Basso C, Thiene G et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol 30(6), 1512–1520. (1997).
  • Thiene G, Nava A, Corrado D, Rossi L, Pennelli N. Right ventricular cardiomyopathy and sudden death in young people. N Engl. J. Med. 318(3), 129–133 (1988).
  • Furlanello F, Bertoldi A, Dallago M et al. Cardiac arrest and sudden death in competitive athletes with arrhythmogenic right ventricular dysplasia. Pacing Clin. Electrophysiol 21(1 Pt 2), 331–335 (1998).
  • DaIla Volta S, Fameli 0, Maschio G. The clinical and hemodynamic syndrome of auricularisation of the right ventricle. (Apropos of four personal cases). Arch. Mal. Coeur Vaiss. 58(8), 1129–1143 (1965).
  • Frank R, Fontaine G, Vedel J et al Electrocardiology of four cases of right ventricular dysplasia inducing arrhythmia. Arch. Mal. Coeur Vaiss. 71(9), 963–972 (1978).
  • Fontaine G, Guiraudon G, Frank R et al. Arrhythmogenic right ventricular dysplasia and Uhl's disease. Arch. Mal. Coeur Vaiss. 75(4), 361–371 (1982).
  • Tiso N, Stephan DA, Nava A et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. MoL Genet. 10(3), 189–194 (2001).
  • •First gene identified for arrhythmogenic right ventricular dysplasia/cardiomyopathy.
  • McKoy G, Protonotarios N, Crosby A et al Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355(9221), 2119–2124 (2000).
  • Norgett EE, Hatsell SJ, Carvajal-Huerta L et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. MoL Genet. 9(18), 2761–2766 (2000).
  • Wallace DC. Mouse models for mitochondrial disease. Am. J. Med. Genet. 106(1), 71–93 (2001).
  • Suomalainen A, Paetau A, Leinonen H et al. Inherited idiopathic dilated cardiomyopathy with multiple deletions of mitochondrial DNA. Lancet 340(8831), 1319–1320 (1992).
  • Taniike M, Fukushima H, Yanagihara I et al. Mitochondrial tRNA(Ile) mutation in fatal cardiomyopathy. Biochem. Biophys. Res. Commun. 186(1), 47–53 (1992).
  • Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, Filiano JJ, Perez-Atayde A. Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J. Inherit. Metal,. Dis. 20(5), 674–680 (1997).
  • Zeviani M, Gellera C, Antozzi C et al. Maternally inherited myopathy and cardiomyopathy: association with mutation in mitochondrial DNA tRNA(Leu)(UUR). Lancet 338(8760), 143–147 (1991).
  • Marin-Garcia J, Ananthakrishnan R, Gonzalvo A, Goldenthal MJ. Novel mutations in mitochondrial cytochrome b in fatal postpartum cardiomyopathy. J. Inherit. Metal,. Dis. 18(1), 77–78 (1995).
  • Arbustini E, Diegoli M, Fasani R et al Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am. J. PathoL 153(5), 1501–1510 (1998).
  • Leonard JV, Schapira AH. Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355(9200), 299–304 (2000).
  • Leonard JV, Schapira AH. Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 355(9201), 389–394 (2000).
  • Larsson NG, Holme E, Kristiansson B, Oldfors A, Tulinius M. Progressive increase of the mutated mitochondrial DNA fraction in Kearns—Sayre syndrome. Pediatr Res. 28(2), 131–136 (1990).
  • Zeviani M, Tiranti V, Piantadosi C. Mitochondrial disorders. Medicine (Baltimore) 77(1), 59–72 (1998).
  • Tanaka M, Ino H, Ohno K et al. Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 336(8728), 1452 (1990).
  • Christodoulou J, McInnes RR, Jay V et al Barth syndrome: clinical observations and genetic linkage studies. Am. J Med. Genet. 50(3), 255–264 (1994).
  • Barth PG, Van den Bogert C, Bolhuis PA et al X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts. J. Inherit. Metab. Dis. 19(2), 157–160 (1996).
  • Zeviani M, Spinazzola A. Mitochondrial disorders. Curr. 1VeuroL Neurosci. Rep. 3(5), 423–432 (2003).
  • Petruzzella V, Tiranti V, Fernandez P et al Identification and characterization of human cDNAs specific to BCS1, PET112, SC01, COX15, and COX//, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 54(3), 494–504 (1998).
  • Zhu Z, Yao J, Johns T et al. SURF1, encoding a factor involved in the biogenesis of cytochrome C oxidase, is mutated in Leigh syndrome. Nature Genet. 20(4), 337–343 (1998).
  • Jaksch M, Ogilvie I, Yao J et al. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome C oxidase deficiency. Hum. MoL Genet. 9(5), 795–801 (2000).
  • Papadopoulou LC, Sue CM, Davidson MM et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nature Genet. 23(3), 333–337 (1999).
  • Sue CM, Karadimas C, Checcarelli N et al Differential features of patients with mutations in two COX assembly genes, SURF-/ and SCO2. Ann. 1VeuroL 47(5), 589–595 (2000).
  • Valnot I, von Kleist-Retzow JC, Barrientos A et al. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome C oxidase deficiency. Hum. MoL Genet. 9(8), 1245–1249 (2000).
  • Tiranti V, Jaksch M, Hofmann S et al. Loss-of-function mutations of SURF-1 are specifically associated with Leigh syndrome with cytochrome C oxidase deficiency. Ann. NeuroL 46(2), 161–166 (1999).
  • Jaksch M, Horvath R, Horn N et al Homozygosity (E140K) in 5CO2 causes delayed infantile onset of cardiomyopathy and neuropathy. Neurology 57(8), 1440–1446 (2001).
  • Salviati L, Sacconi S, Rasalan MM et al. Cytochrome C oxidase deficiency due to a novel 5CO2 mutation mimics Werdnig—Hoffmann disease. Arch. NeuroL 59(5), 862–865 (2002).
  • Sacconi S, Salviati L, Sue CM et al Mutation screening in patients with isolated cytochrome C oxidase deficiency. Pediatr Res. 53(2), 224–230 (2003).
  • Orita M, Suzuki Y, Sekiya T, Hayashi K Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5(4), 874–879 (1989).
  • Underhill PA, Jin L, Lin AA et al Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 7(10), 996–1005 (1997).
  • Underhill PA, Jin L, Zemans R, Oefner PJ, Cavalli-Sforza LL. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc. Nad Acad Sci. USA 93(1), 196–200 (1996).
  • Sanger F, Nicklen S, Coulson AR DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad Sci. USA 74(12), 5463–5467 (1977).
  • Erdmann J, Daehmlow S, Wischke S et al Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin. Genet. 64(4), 339–349 (2003).
  • Waldmuller S, Freund P, Mauch S, Toder R, Vosberg HP. Low-density DNA microarrays are versatile tools to screen for known mutations in hypertrophic cardiomyopathy. Hum. Mutat. 19(5), 560–569 (2002).
  • ••Analysis of the potential utility of DNAmicroarrays for the detection of genetic mutations associated with hypertrophic cardiomyopathy.
  • Bowles NE. The molecular biology of dilated cardiomyopathy. Bur. Heart J. 4 (Suppl. I), 12–17 (2002).
  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Ann. Rev. Cell. Dev. Biol. 18,637–706 (2002).
  • Bowles KR, Abraham SE, Brugada R et al. Construction of a high-resolution physical map of the chromosome 10q22—q23 dilated cardiomyopathy locus and analysis of candidate genes. Genomics 67(2), 109–127 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.