3,718
Views
47
CrossRef citations to date
0
Altmetric
Editorials

Hybrid 3D printing: a game-changer in personalized cardiac medicine?

, &

References

  • Greil GF, Wolf I, Kuettner A, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol. 2007;96(3):176–185. DOI:10.1007/s00392-007-0482-3.

• Describes the feasibility of accurate reconstruction of congenital heart anomalies using data from CT and MRI.

  • Mosadegh B, Xiong G, Dunham S, et al. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015;10(3):034002. DOI:10.1088/1748-6041/10/3/034002.
  • Markert M, Weber S, Lueth TC. A beating heart model 3D printed from specific patient data. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4472–4475.
  • Samuel BP, Pinto C, Pietila T, et al. Ultrasound-derived three-dimensional printing in congenital heart disease. J Digit Imaging. 2015;28(4):459–461. DOI:10.1007/s10278-014-9761-5.

• Demonstrates the feasibility of printing heart models using 3D echocardiographic data set.

•• Discusses proof of concept of integrating multiple imaging modalities to generate a hybrid model for 3D printing.

  • Olivieri LJ, Krieger A, Loke YH, et al. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr. 2015;28(4):392–397. DOI:10.1016/j.echo.2014.12.016.
  • Goitein O, Salem Y, Jacobson J, et al. The role of cardiac computed tomography in infants with congenital heart disease. Isr Med Assoc J. 2014;16(3):147–152.
  • Luijnenburg SE, Robbers-Visser D, Moelker A, et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging. 2010;26(1):57–64. DOI:10.1007/s10554-009-9501-y.
  • Black D, Vettukattil J. Advanced echocardiographic imaging of the congenitally malformed heart. Curr Cardiol Rev. 2013;9(3):241–252. DOI:10.2174/1573403x11309030008.
  • O’Neill B, Wang DD, Pantelic M, et al. Transcatheter caval valve implantation using multimodality imaging: roles of TEE, CT, and 3D printing. JACC Cardiovasc Imaging. 2015;8(2):221–225. DOI:10.1016/j.jcmg.2014.12.006.
  • O’Neill B, Wang DD, Pantelic M, et al. Reply: the role of 3D printing in structural heart disease: all that glitters is not gold. JACC Cardiovasc Imaging. 2015;8(8):968–969. DOI:10.1016/j.jcmg.2015.04.011.

• Provides insight into the deficiencies of currently available techniques in 3D printing.

  • Olivieri L, Krieger A, Chen MY, et al. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol. 2014;172(2):e297–298. DOI:10.1016/j/ijcard.2013.12.192.
  • Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg. 2013;145(5):1407–1408. DOI:10.1016/j.jtcvs.2012.12.030.
  • Schmauss D, Schmitz C, Bigdeli AK, et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg. 2012;93(2):e31–3. DOI:10.1016/j.athoracsur.2011.09.031.
  • Sodian R, Weber S, Markert M, et al. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg. 2008;136(4):1098–1099. DOI:10.1016/j.jtcvs.2008.03.055.
  • Biglino G, Verschueren P, Zegels R, et al. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J Cardiovasc Magn Reson. 2013;15(1):2. DOI:10.1186/1532-429X-15-2.
  • Valverde I, Gomez G, Coserria JF, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85(6):1006–1012. DOI:10.1002/ccd.25810.
  • Ahmad Z, Lim Z, Roman K, et al. The angulation of the septal structures impacts ventricular imbalance in atrioventricular septal defects with a common atrioventricular junction. Cardiol Young. 2015. Epub ahead of print. DOI:10.1017/S1047951115000219.

• Highlights the morphological variability in AVSDs and the need for personalized medicine in CHD.

  • Sinzobahamvya N, Arenz C, Reckers J, et al. Poor outcome for patients with totally anomalous pulmonary venous connection and functionally single ventricle. Cardiol Young. 2009;19(6):594–600. DOI:10.1017/S1047951109991296.
  • Noecker AM, Chen JF, Zhou Q, et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 2006;52(3):349–353. DOI:10.1097/01.mat.0000217962.98619.ab.

•• Describes the feasibility of developing pediatric heart models derived from CT data sets for use in medical device development.

  • Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr. 2015;28(4):398–403. DOI:10.1016/j.echo.2015.02.005.
  • Costello JP, Olivieri LJ, Krieger A, et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5(3):421–426. DOI:10.1177/2150135114528721.
  • Kim MS, Hansgen AR, Wink O, et al. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–2394. DOI:10.1161/CIRCULATIONAHA.107.740977.

• Reviews the techniques involved in rapid prototyping.

  • Costello JP, Olivieri LJ, Su L, et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10(2):185–190. DOI:10.1111/chd.12238.

•• Discusses the utility of 3D printing technology for simulation-based medical education.

  • Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155–1172. DOI:10.1517/14712598.2015.1051527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.