428
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Postoperative management of heart failure in pediatric patients

, , &
Pages 201-215 | Received 26 Sep 2015, Accepted 04 Nov 2015, Published online: 01 Dec 2015

References

  • Papers of special note have been highlighted as:
  • • of interest
  • •• of considerable interest
  • Knowles RL, Bull C, Wren C, et al. Mortality with congenital heart defects in England and Wales, 1959-2009: exploring technological change through period and birth cohort analysis. Arch Dis Child. 2012;97(10):861–865.
  • Thiagarajan RR, Laussen PC. Mortality as an outcome measure following cardiac surgery for congenital heart disease in the current era. Paediatr Anaesth. 2011;21(5):604–608.
  • Pasquali SK, He X, Jacobs JP, et al. Measuring hospital performance in congenital heart surgery: administrative versus clinical registry data. Ann Thorac Surg. 2015;99(3):932–938.
  • Larsen SH, Emmertsen K, Johnsen SP, et al. Survival and morbidity following congenital heart surgery in a population-based cohort of children–up to 12 years of follow-up. Congenit Heart Dis. 2011;6(4):322–329.
  • Kansy A, Ebels T, Schreiber C, et al. Association of center volume with outcomes: analysis of verified data of European Association for Cardio-Thoracic Surgery Congenital Database. Ann Thorac Surg. 2014;98(6):2159–2164.
  • Tibballs J, Kawahira Y, Carter BG, et al. Outcomes of surgical treatment of infants with hypoplastic left heart syndrome: an institutional experience 1983-2004. J Paediatr Child Health. 2007;43(11):746–751.
  • Gordon BM, Rodriguez S, Lee M, et al. Decreasing number of deaths of infants with hypoplastic left heart syndrome. J Pediatr. 2008;153(3):354–358.
  • Wernovsky G, Wypij D, Jonas RA, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995;92(8):2226–2235.
  • Robert SM, Borasino S, Dabal RJ, et al. Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med. 2015;16(7):629–636.

• Recent publication showing decreased incidence of low cardiac output syndrome in patients treated with hydrocortisone infusion.

  • Parr GV, Blackstone EH, Kirklin JW. Cardiac performance and mortality early after intracardiac surgery in infants and young children. Circulation. 1975;51(5):867–874.

•• One of the first studies describing low cardiac output syndrome and risk of death.

  • Wessel DL. Managing low cardiac output syndrome after congenital heart surgery. Crit Care Med. 2001;29(10 Suppl):S220–S230.
  • Cooper DS, Nichter MA. Advances in cardiac intensive care. Curr Opin Pediatr. 2006;18(5):503–511.
  • Bronicki RA, Chang AC. Management of the postoperative pediatric cardiac surgical patient. Crit Care Med. 2011;39(8):1974–1984.
  • Agarwal HS, Wolfram KB, Saville BR, et al. Postoperative complications and association with outcomes in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2014;148(2):609–616 e601.
  • Ofori-Amanfo G, Cheifetz IM. Pediatric postoperative cardiac care. Crit Care Clin. 2013;29(2):185–202.
  • Ravishankar C, Tabbutt S, Wernovsky G. Critical care in cardiovascular medicine. Curr Opin Pediatr. 2003;15(5):443–453.
  • Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest. 1997;112(3):676–692.
  • Brown KL, Ridout DA, Goldman AP, et al. Risk factors for long intensive care unit stay after cardiopulmonary bypass in children. Crit Care Med. 2003;31(1):28–33.
  • Howard F, Brown KL, Garside V, et al. Fast-track paediatric cardiac surgery: the feasibility and benefits of a protocol for uncomplicated cases. Eur J Cardiothorac Surg. 2010;37(1):193–196.
  • Almond CS, Thiagarajan RR, Piercey GE, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation. 2009;119(5):717–727.
  • Agarwal HS, Hardison DC, Saville BR, et al. Residual lesions in postoperative pediatric cardiac surgery patients receiving extracorporeal membrane oxygenation support. J Thorac Cardiovasc Surg. 2014;147(1):434–441.
  • Booth KL, Roth SJ, Perry SB, et al. Cardiac catheterization of patients supported by extracorporeal membrane oxygenation. J Am Coll Cardiol. 2002;40(9):1681–1686.

• Describes the incidence of residual lesions in patients requiring extracorporeal membrane oxygenation.

  • De Boode WP. Cardiac output monitoring in newborns. Early Hum Dev. 2010;86(3):143–148.
  • Duke T, Stocker C, Butt W. Monitoring children after cardiac surgery: a minimalist approach might be maximally effective. Crit Care Resusc. 2004;6(4):306–310.
  • Hoffman GM, Ghanayem NS, Tweddell JS. Noninvasive assessment of cardiac output. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2005;8(1):12–21.
  • Tibby SM, Hatherill M, Murdoch IA. Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch Dis Child. 1999;80(2):163–166.
  • Bohn D. Objective assessment of cardiac output in infants after cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14(1):19–23.
  • Rossi AF, Khan DM, Hannan R, et al. Goal-directed medical therapy and point-of-care testing improve outcomes after congenital heart surgery. Intensive Care Med. 2005;31(1):98–104.
  • Rossi AF, Sommer RJ, Lotvin A, et al. Usefulness of intermittent monitoring of mixed venous oxygen saturation after stage I palliation for hypoplastic left heart syndrome. Am J Cardiol. 1994;73(15):1118–1123.
  • Tweddell JS, Ghanayem NS, Mussatto KA, et al. Mixed venous oxygen saturation monitoring after stage 1 palliation for hypoplastic left heart syndrome. Ann Thorac Surg. 2007;84(4):1301–1310; discussion 1310–1301.
  • Duke T, Butt W, South M, et al. Early markers of major adverse events in children after cardiac operations. J Thorac Cardiovasc Surg. 1997;114(6):1042–1052.
  • Hirsch JC, Charpie JR, Ohye RG, et al. Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13(1):51–54.
  • Kussman BD, Wypij D, DiNardo JA, et al. Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg. 2009;108(4):1122–1131.
  • Phelps HM, Mahle WT, Kim D, et al. Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg. 2009;87(5):1490–1494.
  • Tume LN, Arnold P. Near-infrared spectroscopy after high-risk congenital heart surgery in the paediatric intensive care unit. Cardiol Young. 2015;25(3):459–467.
  • Bhalala US, Nishisaki A, McQueen D, et al. Change in regional (somatic) near-infrared spectroscopy is not a useful indicator of clinically detectable low cardiac output in children after surgery for congenital heart defects. Pediatr Crit Care Med. 2012;13(5):529–534.
  • Butts RJ, Scheurer MA, Atz AM, et al. Comparison of maximum vasoactive inotropic score and low cardiac output syndrome as markers of early postoperative outcomes after neonatal cardiac surgery. Pediatr Cardiol. 2012;33(4):633–638.
  • Hoffman TM, Wernovsky G, Atz AM, et al. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics (PRIMACORP) study. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics. Am Heart J. 2002;143(1):15–21.

•• Large multicenter randomized study showing decreased incidence of low cardiac output syndrome in patients treated with milrinone.

  • Meyer S, Gortner L, Brown K, et al. The role of milrinone in children with cardiovascular compromise: review of the literature. Wien Med Wochenschr. 2011;161(7–8):184–191.
  • Vogt W, Laer S. Prevention for pediatric low cardiac output syndrome: results from the European survey EuLoCOS-Paed. Paediatr Anaesth. 2011;21(12):1176–1184.
  • Honerjager P. Pharmacology of bipyridine phosphodiesterase III inhibitors. Am Heart J. 1991;121(6 Pt 2):1939–1944.
  • Young RA, Ward A. Milrinone. A preliminary review of its pharmacological properties and therapeutic use. Drugs. 1988;36(2):158–192.
  • Chang AC, Atz AM, Wernovsky G, et al. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med. 1995;23(11):1907–1914.
  • Latifi S, Lidsky K, Blumer JL. Pharmacology of inotropic agents in infants and children. Prog Pediatr Cardiol. 2000;12(1):57–79.
  • Coe JY, Olley PM, Vella G, et al. Bipyridine derivatives lower arteriolar resistance and improve left ventricular function in newborn lambs. Pediatr Res. 1987;22(4):422–428.
  • Zuppa AF, Nicolson SC, Adamson PC, et al. Population pharmacokinetics of milrinone in neonates with hypoplastic left heart syndrome undergoing stage I reconstruction. Anesth Analg. 2006;102(4):1062–1069.
  • Allwood MJ, Cobbold AF, Ginsburg J. Peripheral vascular effects of noradrenaline, isopropylnoradrenaline and dopamine. Br Med Bull. 1963;19:132–136.
  • Greenway CV. Mechanisms and quantitative assessment of drug effects on cardiac output with a new model of the circulation. Pharmacol Rev. 1981;33(4):213–251.
  • Caspi J, Coles JG, Benson LN, et al. Effects of high plasma epinephrine and Ca2+ concentrations on neonatal myocardial function after ischemia. J Thorac Cardiovasc Surg. 1993;105(1):59–67.
  • Caspi J, Coles JG, Benson LN, et al. Age-related response to epinephrine-induced myocardial stress. A functional and ultrastructural study. Circulation. 1991;84(5 Suppl):III394–III399.
  • Driscoll DJ, Gillette PC, Duff DF, et al. Hemodynamic effects of dobutamine in children. Am J Cardiol. 1979;43(3):581–585.
  • Habib DM, Padbury JF, Anas NG, et al. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med. 1992;20(5):601–608.
  • Booker PD, Evans C, Franks R. Comparison of the haemodynamic effects of dopamine and dobutamine in young children undergoing cardiac surgery. Br J Anaesth. 1995;74(4):419–423.
  • Feneck RO, Sherry KM, Withington PS, et al., European Milrinone Multicenter Trial Group. Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J Cardiothorac Vasc Anesth. 2001;15(3):306–315.
  • Loeb HS, Bredakis J, Gunner RM. Superiority of dobutamine over dopamine for augmentation of cardiac output in patients with chronic low output cardiac failure. Circulation. 1977;55(2):375–378.
  • Pang CC. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001;90(2–3):179–230.
  • Perez CA, Reimer JM, Schreiber MD, et al. Effect of high-dose dopamine on urine output in newborn infants. Crit Care Med. 1986;14(12):1045–1049.
  • Padbury JF, Agata Y, Baylen BG, et al. Dopamine pharmacokinetics in critically ill newborn infants. J Pediatr. 1987;110(2):293–298.
  • Padbury JF, Agata Y, Baylen BG, et al. Pharmacokinetics of dopamine in critically ill newborn infants. J Pediatr. 1990;117(3):472–476.
  • Girardin E, Berner M, Rouge JC, et al. Effect of low dose dopamine on hemodynamic and renal function in children. Pediatr Res. 1989;26(3):200–203.
  • Debaveye YA, Van Den Berghe GH. Is there still a place for dopamine in the modern intensive care unit? Anesth Analg. 2004;98(2):461–468.
  • Li J, Zhang G, Holtby H, et al. Adverse effects of dopamine on systemic hemodynamic status and oxygen transport in neonates after the Norwood procedure. J Am Coll Cardiol. 2006;48(9):1859–1864.
  • Benitz WE, Malachowski N, Cohen RS, et al. Use of sodium nitroprusside in neonates: efficacy and safety. J Pediatr. 1985;106(1):102–110.
  • Bennett NR, Abbott TR. The use of sodium nitroprusside in children. Anaesthesia. 1977;32(5):456–463.
  • Benzing G 3rd, Helmsworth JA, Schreiber JT, et al. Nitroprusside and epinephrine for treatment of low output in children after open-heart surgery. Ann Thorac Surg. 1979;27(6):523–528.
  • Rosenzweig EB, Starc TJ, Chen JM, et al. Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation. 1999;100(19 Suppl):II182–II186.
  • Choong K, Kissoon N. Vasopressin in pediatric shock and cardiac arrest. Pediatr Crit Care Med. 2008;9(4):372–379.
  • Momeni M, Rubay J, Matta A, et al. Levosimendan in congenital cardiac surgery: a randomized, double-blind clinical trial. J Cardiothorac Vasc Anesth. 2011;25(3):419–424.
  • Lechner E, Hofer A, Leitner-Peneder G, et al. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Pediatr Crit Care Med. 2012;13(5):542–548.
  • Namachivayam P, Crossland DS, Butt WW, et al. Early experience with Levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med. 2006;7(5):445–448.
  • Angadi U, Westrope C, Chowdhry MF. Is levosimendan effective in paediatric heart failure and post-cardiac surgeries? Interact Cardiovasc Thorac Surg. 2013;17(4):710–714.
  • Silvetti S, Silvani P, Azzolini ML, et al. A systematic review on levosimendan in paediatric patients. Curr Vasc Pharmacol. 2015;13(1):128–133.
  • Lim JY, Deo SV, Rababa’h A, et al. Levosimendan reduces mortality in adults with left ventricular dysfunction undergoing cardiac surgery: a systematic review and meta-analysis. J Card Surg. 2015;30(7):547–554.
  • Sasidharan P. Role of corticosteroids in neonatal blood pressure homeostasis. Clin Perinatol. 1998;25(3):723–740, xi.
  • Seri I, Tan R, Evans J. Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics. 2001;107(5):1070–1074.
  • Millar KJ, Thiagarajan RR, Laussen PC. Glucocorticoid therapy for hypotension in the cardiac intensive care unit. Pediatr Cardiol. 2007;28(3):176–182.
  • Suominen PK, Dickerson HA, Moffett BS, et al. Hemodynamic effects of rescue protocol hydrocortisone in neonates with low cardiac output syndrome after cardiac surgery. Pediatr Crit Care Med. 2005;6(6):655–659.
  • Polikar R, Burger AG, Scherrer U, et al. The thyroid and the heart. Circulation. 1993;87(5):1435–1441.
  • Mainwaring RD, Healy RM, Meier FA, et al. Reduction in levels of triiodothyronine following the first stage of the Norwood reconstruction for hypoplastic left heart syndrome. Cardiol Young. 2001;11(3):295–300.
  • Portman MA, Slee A, Olson AK, et al. Triiodothyronine supplementation in infants and children undergoing cardiopulmonary bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122(11 Suppl):S224–S233.
  • Mackie AS, Booth KL, Newburger JW, et al. A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg. 2005;130(3):810–816.
  • Carrel T, Eckstein F, Englberger L, et al. Thyronin treatment in adult and pediatric heart surgery: clinical experience and review of the literature. Eur J Heart Fail. 2002;4(5):577–582.
  • Cooper DS, Jacobs JP, Moore L, et al. Cardiac extracorporeal life support: state of the art in 2007. Cardiol Young. 2007;17(Suppl 2):104–115.
  • Lequier L, Horton SB, McMullan DM, et al. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med. 2013;14(5 Suppl 1):S7–S12.
  • O’Byrne ML, Glatz AC, Rossano JW, et al. Middle-term results of trans-catheter creation of atrial communication in patients receiving mechanical circulatory support. Catheter Cardiovasc Interv. 2015;85(7):1189–1195.
  • Hill JD, O’Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286(12):629–634.
  • Hill JD, De Leval MR, Fallat RJ, et al. Acute respiratory insufficiency. Treatment with prolonged extracorporeal oxygenation. J Thorac Cardiovasc Surg. 1972;64(4):551–562.
  • Zapol W, Pontoppidan H, McCullough N, et al. Clinical membrane lung support for acute respiratory insufficiency. Trans Am Soc Artif Intern Organs. 1972;18:553–560, 562.
  • Dorson W Jr., Meyer B, Baker E, et al. Response of distressed infants to partial bypass lung assist. Trans Am Soc Artif Intern Organs. 1970;16:345–351.
  • Bartlett RH, Gazzaniga AB, Jefferies MR, et al. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs. 1976;22:80–93.
  • Zapol WM, Snider MT, Hill JD, et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. Jama. 1979;242(20):2193–2196.
  • Kirkpatrick BV, Krummel TM, Mueller DG, et al. Use of extracorporeal membrane oxygenation for respiratory failure in term infants. Pediatrics. 1983;72(6):872–876.
  • Bartlett RH, Andrews AF, Toomasian JM, et al. Extracorporeal membrane oxygenation for newborn respiratory failure: forty-five cases. Surgery. 1982;92(2):425–433.
  • Bartlett RH, Roloff DW, Cornell RG, et al. Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics. 1985;76(4):479–487.
  • O’Rourke PP, Crone RK, Vacanti JP, et al. Extracorporeal membrane oxygenation and conventional medical therapy in neonates with persistent pulmonary hypertension of the newborn: a prospective randomized study. Pediatrics. 1989;84(6):957–963.
  • UK Collaborative ECMO Trail Group. UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. Lancet. 1996;348(9020):75–82.
  • Anderson HL 3rd, Attorri RJ, Custer JR, et al. Extracorporeal membrane oxygenation for pediatric cardiopulmonary failure. J Thorac Cardiovasc Surg. 1990;99(6):1011–1019; discussion 1019–1021.
  • O’Rourke PP. Use of extracorporeal life support in patients with congenital heart disease: state of the art? Crit Care Med. 1992;20(9):1199–1200.
  • Meliones JN, Custer JR, Snedecor S, et al. Extracorporeal life support for cardiac assist in pediatric patients. Review of ELSO Registry data. Circulation. 1991;84(5 Suppl):III168–III172.
  • Paden ML, Conrad SA, Rycus PT, et al. Extracorporeal Life Support Organization Registry Report 2012. Asaio J. 2013;59(3):202–210.
  • Mascio CE, Austin EH 3rd, Jacobs JP, et al. Perioperative mechanical circulatory support in children: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg. 2014;147(2):658–664; discussion 664–655.
  • Salvin JW, Laussen PC, Thiagarajan RR. Extracorporeal membrane oxygenation for postcardiotomy mechanical cardiovascular support in children with congenital heart disease. Paediatr Anaesth. 2008;18(12):1157–1162.
  • Kumar TK, Zurakowski D, Dalton H, et al. Extracorporeal membrane oxygenation in postcardiotomy patients: factors influencing outcome. J Thorac Cardiovasc Surg. 2010;140(2):330–336 e332.
  • Alsoufi B, Al-Radi OO, Gruenwald C, et al. Extra-corporeal life support following cardiac surgery in children: analysis of risk factors and survival in a single institution. Eur J Cardiothorac Surg. 2009;35(6):1004–1011; discussion 1011.
  • Dipchand AI, Mahle WT, Tresler M, et al. Extracorporeal membrane oxygenation (ECMO) as a bridge to pediatric heart transplantation: impact on post-listing and post-transplantation outcomes. Circ Heart Fail. 2015;8(5):960–969.
  • Butt W, Heard M, Peek GJ. Clinical management of the extracorporeal membrane oxygenation circuit. Pediatr Crit Care Med. 2013;14(5 Suppl 1):S13–S19.
  • Schmidt M, Burrell A, Roberts L, et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J. 2015;36(33):2246–2256.
  • Hacking DF, Best D, d’Udekem Y, et al. Elective decompression of the left ventricle in pediatric patients may reduce the duration of venoarterial extracorporeal membrane oxygenation. Artif Organs. 2015;39(4):319–326.
  • Undar A, McKenzie ED, McGarry MC, et al. Outcomes of congenital heart surgery patients after extracorporeal life support at Texas Children’s Hospital. Artif Organs. 2004;28(10):963–966.
  • Sivarajan VB, Best D, Brizard CP, et al. Improved outcomes of paediatric extracorporeal support associated with technology change. Interact Cardiovasc Thorac Surg. 2010;11(4):400–405.
  • Wilmot I, Morales DL, Price JF, et al. Effectiveness of mechanical circulatory support in children with acute fulminant and persistent myocarditis. J Card Fail. 2011;17(6):487–494.
  • Morales DL, Braud BE, Price JF, et al. Use of mechanical circulatory support in pediatric patients with acute cardiac graft rejection. Asaio J. 2007;53(6):701–705.
  • O’Connor MJ, Rossano JW. Ventricular assist devices in children. Curr Opin Cardiol. 2014;29(1):113–121.
  • Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J Am Coll Cardiol. 2015;65(19):e7–e26.
  • Hodge AB, Yeager CJ, Preston TJ, et al. The Thoratec CentriMag for pediatric right ventricular failure. J Extra Corpor Technol. 2013;45(2):133–135.
  • Takayama H, Naka Y, Kodali SK, et al. A novel approach to percutaneous right-ventricular mechanical support. Eur J Cardiothorac Surg. 2012;41(2):423–426.
  • Stretch R, Sauer CM, Yuh DD, et al. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64(14):1407–1415.
  • Kulat BT, Russell HM, Sarwark AE, et al. Modified TandemHeart ventricular assist device for infant and pediatric circulatory support. Ann Thorac Surg. 2014;98(4):1437–1441.
  • Andrade JG, Al-Saloos H, Jeewa A, et al. Facilitated cardiac recovery in fulminant myocarditis: pediatric use of the Impella LP 5.0 pump. J Heart Lung Transplant. 2010;29(1):96–97.
  • Ricci M, Gaughan CB, Rossi M, et al. Initial experience with the TandemHeart circulatory support system in children. Asaio J. 2008;54(5):542–545.
  • Santise G, Petrou M, Pepper JR, et al. Levitronix as a short-term salvage treatment for primary graft failure after heart transplantation. J Heart Lung Transplant. 2006;25(5):495–498.
  • De Rita F, Hasan A, Haynes S, et al. Mechanical cardiac support in children with congenital heart disease with intention to bridge to heart transplantationdagger. Eur J Cardiothorac Surg. 2014;46(4):656–662; discussion 662.
  • Mansfield RT, Lin KY, Zaoutis T, et al. The use of pediatric ventricular assist devices in children’s hospitals from 2000 to 2010: morbidity, mortality, and hospital charges. Pediatr Crit Care Med. 2015;16(6):522–528.
  • Fraser CD Jr, Jaquiss RD, Rosenthal DN, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012;367(6):532–541.

•• Shows improved survival of pediatric patients supported with Berlin Heart EXCOR ventricular assist device.

  • De Rita F, Hasan A, Haynes S, et al. Outcome of mechanical cardiac support in children using more than one modality as a bridge to heart transplantation. Eur J Cardiothorac Surg. 2015;48(6):917–922.
  • Cabrera AG, Sundareswaran KS, Samayoa AX, et al. Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. J Heart Lung Transplant. 2013;32(11):1107–1113.
  • Kirklin JK, Naftel DC, Pagani FD, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–564.
  • Blume ED, Naftel DC, Bastardi HJ, et al. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113(19):2313–2319.
  • Moffett BS, Cabrera AG, Teruya J, et al. Anticoagulation therapy trends in children supported by ventricular assist devices: a multi-institutional study. Asaio J. 2014;60(2):211–215.
  • Almond CS, Morales DL, Blackstone EH, et al. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127(16):1702–1711.
  • Weinstein S, Bello R, Pizarro C, et al. The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg. 2014;147(2):697–704; discussion 704–695.
  • Gournay V, Hauet Q. Mechanical circulatory support for infants and small children. Arch Cardiovasc Dis. 2014;107(6–7):398–405.
  • Murphy MO, Glatz AC, Goldberg DJ, et al. Management of early Fontan failure: a single-institution experience. Eur J Cardiothorac Surg. 2014;46(3):458–464; discussion 464.
  • Kobashigawa J, Zuckermann A, Macdonald P, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–340.
  • Huang J, Trinkaus K, Huddleston CB, et al. Risk factors for primary graft failure after pediatric cardiac transplantation: importance of recipient and donor characteristics. J Heart Lung Transplant. 2004;23(6):716–722.
  • Mahle WT, Tresler MA, Edens RE, et al. Allosensitization and outcomes in pediatric heart transplantation. J Heart Lung Transplant. 2011;30(11):1221–1227.
  • Razzouk AJ, Bailey LL. Heart transplantation in children for end-stage congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2014;17(1):69–76.
  • Shaddy RE, Hunter DD, Osborn KA, et al. Prospective analysis of HLA immunogenicity of cryopreserved valved allografts used in pediatric heart surgery. Circulation. 1996;94(5):1063–1067.
  • Hawkins JA, Breinholt JP, Lambert LM, et al. Class I and class II anti-HLA antibodies after implantation of cryopreserved allograft material in pediatric patients. J Thorac Cardiovasc Surg. 2000;119(2):324–330.
  • O’Connor MJ, Harville TO, Rhodes-Clark B, et al. Quantification, identification, and relevance of anti-human leukocyte antigen antibodies formed in association with the berlin heart ventricular assist device in children. Transplantation. 2013;95(12):1542–1547.
  • Rossano JW, Kim JJ, Decker JA, et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail. 2012;18(6):459–470.
  • Peer SM, Costello JP, Klein JC, et al. Twenty-four hour in-hospital congenital cardiac surgical coverage improves perioperative ECMO support outcomes. Ann Thorac Surg. 2014;98(6):2152–2157; discussion 2157–2158.
  • Costello JM, Dunbar-Masterson C, Allan CK, et al. Impact of empiric nesiritide or milrinone infusion on early postoperative recovery after Fontan surgery: a randomized, double-blind, placebo-controlled trial. Circ Heart Fail. 2014;7(4):596–604.
  • Bathgate RA, Halls ML, Van Der Westhuizen ET, et al. Relaxin family peptides and their receptors. Physiol Rev. 2013;93(1):405–480.
  • Diez J. Serelaxin: a novel therapy for acute heart failure with a range of hemodynamic and non-hemodynamic actions. Am J Cardiovasc Drugs. 2014;14(4):275–285.
  • Conway J, St Louis J, Morales DL, et al. Delineating survival outcomes in children <10 kg bridged to transplant or recovery with the Berlin Heart EXCOR Ventricular Assist Device. JACC Heart Fail. 2015;3(1):70–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.