45
Views
7
CrossRef citations to date
0
Altmetric
Review

Hibernating myocardium in heart failure

, , , , &
Pages 111-122 | Published online: 10 Jan 2014

References

  • Levy D, Kenchaiah S, Larson MG et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med.347, 1397–1402 (2002).
  • Mosterd A, Cost B, Hoes AW et al. The prognosis of heart failure in the general population. The Rotterdam Study. Eur. Heart J.2, 1318–1327 (2001).
  • Hobbs FD, Kenkre JE, Roalfe AK, Davis RC, Hare R, Davies MK. Impact of heart failure and left ventricular systolic dysfunction on quality of life. A cross-sectional study comparing common chronic cardiac and medical disorders and a representative adult population. Eur. Heart J.23, 1867–1876 (2002).
  • Alderman EL, Fisher LD, Litwin P et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation68, 785–795 (1983).
  • Rahimtoola SH. A perspective on the three large multicentre randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation72(Suppl. 5), 123–135 (1985).
  • Rahimtoola SH. The hibernating myocardium. Am. Heart J.117, 211–221 (1989).
  • Ross J. Myocardial perfusion–contraction matching. Implications for coronary heart disease and hibernation. Circulation83, 1076–1083 (1991).
  • Heyndrickx G, Millard R, McRitchie R, Maroko P, Vatner S. Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J. Clin. Invest.56, 978–985 (1975).
  • Braunwald E, Kloner R. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation66, 1146–1149 (1982).
  • Bolli R. Myocardial “stunning” in man. Circulation86, 1671–1691 (1992).
  • Vanoverschelde JL, Wijns W, Depre C et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation87, 1513–1523 (1993).
  • Di Carli MF, Asgarzadie F, Schelbert HR et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation92, 3436–3444 (1995).
  • Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J. Am. Coll. Cardiol.39, 1151–1158 (2002).
  • Bax JJ, Visser FC, Poldermans D et al. Relationship between preoperative viability and postoperative improvement in LVEF and heart failure symptoms. J. Nucl. Med.42, 87–90 (2001).
  • Bax JJ, Poldermans D, Elhendy A et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J. Am. Coll. Cardiol.34, 163–169 (1999).
  • Schwaiger M, Schelbert H, Ellison D et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J. Am. Coll. Cardiol.6, 336–347 (1985).
  • Buxton D, Schelbert H. Measurement of regional glucose metabolic rates in reperfused myocardium. Am. J. Physiol.261, H2058–H2068 (1991).
  • Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active down-regulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ. Res.69, 1458–1469 (1991).
  • McFalls E, Baldwin D, Palmer B, Marx D, Jaimes D, Ward H. Regional glucose uptake within hypoperfused swine myocardium as measured by PET. Am. J. Physiol.272, H343–H349 (1997).
  • Fallavollita JA, Perry BJ, Canty JM. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation95, 1900–1909 (1997).
  • Fallavollita JA, Canty JM. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion. Evidence for chronic stunning in pigs. Circulation99, 2798–2805 (1999).
  • Shivalkar B, Flameng W, Szilard M, Pislaru S, Borgers M, Vanhaecke J. Repeated stunning precedes myocardial hibernation in progressive multiple coronary artery obstruction. J. Am. Coll. Cardiol.34, 2126–2136 (1999).
  • McFalls EO, Murad B, Liow JS et al. Glucose uptake and glycogen levels are increased in pig heart after repetitive ischemia. Am. J. Physiol.282, H205–H211 (2002).
  • Kim SJ, Peppas A, Hong SK et al. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ. Res.92, 1233–1239 (2003).
  • Maes A, Flameng W, Nuyts J et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation90, 735–745 (1994).
  • Schwarz ER, Schaper J, vom Dahl J et al. Myocyte degeneration and cell death in hibernating human myocardium. J. Am. Coll. Cardiol.27, 1577–1585 (1996).
  • Elsasser A, Schlepper M, Klovekorn WP et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation96, 2920–2931 (1997).
  • Wiggers H, Noreng M, Paulsen PK et al. Energy stores and metabolites in chronic reversibly and irreversibly dysfunctional myocardium in humans. J. Am. Coll. Cardiol.37, 100–108 (2001).
  • Ausma J, Thone F, Dispersyn GD et al. Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia tolerant. Mol. Cell. Biochem.186, 159–168 (1998).
  • Elsasser A, Muller K-D, Skwara W, Bode C, Kubler W, Vogt AM. Severe energy deprivation of human hibernating myocardium as possible common pathomechanism of contractile dysfunction, structural degeneration and cell death. J. Am. Coll. Cardiol.39, 1189–1198 (2002).
  • Gunning MG, Kaprielian RR, Pepper J et al. The histology of viable and hibernating myocardium in relation to imaging characteristics. J. Am. Coll. Cardiol.39, 428–435 (2002).
  • Thomas SA, Fallavollita JA, Suzuki G, Borgers M, Canty JM. Dissociation of regional adaptations and global myolysis in an accelerated swine model of chronic hibernating myocardium. Circ. Res.91, 970–977 (2002).
  • Elsasser A, Vogt AM, Nef H et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J. Am. Coll. Cardiol.43, 2191–2199 (2004).
  • Elsasser A, Decker E, Kostin S et al. A self-perpetuating vicious cycle of tissue damage in human hibernating myocardium. Mol. Cell. Biochem.213, 17–28 (2000).
  • Ausma J, Fust D, Thone F et al. Molecular changes of titin in left ventricular dysfunction as a result of chronic hibernation. J. Mol. Cell. Cardiol.27, 1203–1212 (1995).
  • Ausma J, van Eys GJ, Broers JL et al. Nuclear lamin expression in chronic hibernating myocardium in man. J. Mol. Cell. Cardiol.28, 1297–1305 (1996).
  • Pantely GA, Malone SA, Rhen WS et al. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ. Res.67, 1481–1493 (1990).
  • Zhang J, Ishibashi Y, Zhang Y et al. Myocardial bioenergetics during acute hibernation. Am. J. Physiol.273, H1452–H1463 (1997).
  • Canty JM, Fallavollita JA. Resting myocardial flow in hibernating myocardium: validating animal models of human pathophysiology. Am. J. Physiol.277(1 Pt 2), H417–H422 (1999).
  • Camici PG, Rimoldi OE. Myocardial blood flow in patients with hibernating myocardium. Cardiovasc Res.57, 302–311 (2003).
  • Uren N, Melin J, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N. Engl. J. Med.330, 1782–1788 (1994).
  • Pagano D, Fath-Ordoubadi F, Beatt J, Townend JN, Bonser RS, Camici PG. Effects of coronary revascularization on myocardial blood flow and coronary vasodilator reserve in hibernating myocardium. Heart85, 208–212 (2001).
  • al Mohammad A, Mahy IR, Norton MY et al. Prevalence of hibernating myocardium in patients with severely impaired ischemic left ventricles. Heart80, 559–564 (1998).
  • Auerbach MA, Schoeder H, Hoh C et al. Prevalence of myocardial viability as detected by PET in patients with ischemic cardiomyopathy. Circulation99, 2921–2926 (1999).
  • Schinkel AF, Bax JJ, Sozzi FB et al. Prevalence of myocardial viability by SPECT in patients with chronic ischemic left ventricular dysfunction. Heart88, 125–130 (2002).
  • Cleland JGF, Pennell DG, Ray SG et al. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (Christmas trial): randomized, controlled trial. Lancet362, 14–21 (2003).
  • Poldermans D, Rambaldi R, Bax JJ et al. Safety and utility of atropine addition during dobutamine stress echocardiography for the assessment of viable myocardium in patients with severe left ventricular dysfunction. Eur. Heart J.19, 1712–1718 (1998).
  • Schiller NB, Shah PM, Crawford M et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J. Am. Soc. Echocardiogr.2, 358–367 (1989).
  • Cigarroa CG, de Fillipini CR, Brickner ME, Alvarez LG, Wait MA, Grayburn PA. Dobutamine stress echo identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation88, 430–436 (1993).
  • La Canna G, Alfiere O, Giubbini R, Gargano M, Ferrari R, Visiolo O. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J. Am. Coll. Cardiol.23, 617–626 (1994).
  • Afridi I, Kleiman NS, Raizner AE, Zoghbi WA. Dobutamine echocardiography and myocardial hibernation: optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation91, 663–670 (1995).
  • Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity and predictive accuracies of various non-invasive techniques for detecting hibernating myocardium. Curr. Prob. Cardiol.26, 147–186 (2001).
  • Piscione F, Perrone-Filardi P, De Luca G et al. Low-dose dobutamine echocardiography for predicting functional recovery after coronary revascularization. Heart86, 679–686 (2001).
  • Yong Y, Wu D, Fernandes V et al. Diagnostic accuracy and cost-effectiveness of contrast echocardiography on evaluation of cardiac function in technically very difficult patients in the intensive care unit. Am. J. Cardiol.89, 711–718 (2002).
  • Shimoni S, Frangogiannis NG, Aggeli CJ et al. Identification of hibernating myocardium with quantitative intravenous myocardial contrast echocardiography: comparison with dobutamine echocardiography and thallium-201 scintigraphy. Circulation107, 538–544 (2003).
  • Wagdy HM, Christian TF, Miller TD, Gibbons RJ. The value of 24-hr images after rest thallium injection. Nucl. Med. Commun.23, 629–637 (2002).
  • He ZX, Darcourt J, Guignier A et al. Nitrates improve detection of ischemic but viable myocardium by thallium reinjection SPECT. J. Nucl. Med.34, 1472–1477 (1993).
  • Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N. Engl. J. Med.323, 141–146 (1990).
  • Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation83, 26–37 (1991).
  • Matsunari I, Fujino S, Taki J et al. Quantitative rest technetium-99m tetrafosmin imaging in predicting functional recovery after revascularization: comparison with rest-redistribution thallium-201. J. Am. Coll. Cardiol.29, 1226–1233 (1997).
  • Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation98, 501–508 (1998).
  • Bisi G, Sciagra R, Santoro GM, Fazzini PF. Rest technetium-99m sestamibi in combination with short-term administration of nitrates: feasibility and reliability for prediction of postrevascularization outcome of asynergic territories. J. Am. Coll. Cardiol.24, 1282–1289 (1994).
  • Mabuci M, Kubo N, Moria K et al. Prediction of recovery after coronary artery bypass graft surgery using quantitative gated myocardial perfusion SPECT. Nucl. Med. Commun.24, 625–631 (2003).
  • Mabuchi M, Kubo N, Morita K et al. Value and limitation of myocardial FDG SPECT using ultra high energy collimators for assessing myocardial viability. Nucl. Med. Commun.23, 879–885 (2002).
  • Tillisch J, Brunken R, Marshall S et al. Reversibility of cardiac wall-motion abnormalities predicted by PET. N. Engl. J. Med.314, 884–848 (1986).
  • Tamaki N, Kawamoto M, Tadamura E et al. Prediction of reversible ischemia after revascularization: perfusion and metabolic studies with PET. Circulation91, 1697–1705 (1995).
  • Kitsiou AN, Bacharach SL, Bartlett ML et al. 13N-ammonia blood flow and uptake: relation to functional outcome of asynergic regions after revascularization. J. Am. Coll. Cardiol.33, 678–686 (1999).
  • Pagano D, Bonser RS, Townwnd JN, Ordoubadi F, Lorenzoni R, Camici PG. Predictive value of dobutamine echocardiography and PET in identifying hibernating myocardium in patients with postischemic failure. Heart79, 281–288 (1998).
  • Pagano D, Lewis ME, Townwnd JN, Davies P, Camici PG, Bonser RS. Coronary revascularization for postischemic heart failure: how myocardial viability affects survival. Heart82, 684–688 (1999).
  • Baer FM, Theissen P, Schneider CA et al. Dobutamine MRI predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J. Am. Coll. Cardiol.31, 1040–1048 (1998).
  • Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced MRI to identify reversible myocardial dysfunction. N. Engl. J. Med.343, 1445–1453 (2000).
  • Wu E, Judd RM, Vargus JD, Klocke FJ, Bonow R, Kim RJ. Visualization of presence, location and transmural extent of healed Q-wave and non Q-wave MI. Lancet357, 21–28 (2001).
  • Pagano D, Townend JN, Parums DV, Bonser RS, Camici PG. Hibernating myocardium: morphological correlates of inotropic stimulation and glucose uptake. Heart83, 456–461 (2000).
  • Wagner A, Mahrholdt H, Holly TA et al. Contrast-enhanced MRI and routine single-photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet361, 374–379 (2003).
  • Schinkel AF, Bax JJ, Domburg R et al. Dobutamine-induced contractile reserve in stunned, hibernating and scarred myocardium in patients with ischemic cardiomyopathy. J. Nucl. Med.4, 127–133 (2003).
  • Bax JJ, Maddahi J, Poldermans D et al. Sequential 201Tl imaging and dobutamine echocardiography to enhance accuracy of predicting improved left ventricular ejection fraction after revascularization. J. Nucl. Med.43(6), 795–802 (2002).
  • Elefteriades J, Tolis G, Levi E, Mills L, Zaret B. Coronary artery bypass grafting in severe left ventricular dysfunction: excellent survival with improved ejection fraction and functional state. J. Am. Coll. Cardiol.22, 1411–1417 (1993).
  • Vanoverschelde JL, Depre C, Gerber BL et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am. J. Cardiol.85, 1432–1439 (2000).
  • Bax JJ, Visser FC, Poldermans D et al. Time course of functional recovery of stunned and hibernating segments after surgical revascularization. Circulation104(Suppl. 1), I314–I318 (2001).
  • Di Carli F, Hachamovitch R, Berman DS. The art and science of predicting postrevascularization improvement in left ventricular function in patients with severely depressed left ventricular function. J. Am. Coll. Cardiol.40, 1744–1747 (2002).
  • Bax JJ, Schinkel AFL, Boersma E et al. Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation108(Suppl. 2), 39–42 (2003).
  • Dalle Mule J, Bax JJ, Zingone B et al. The beneficial effect of revascularization on jeopardised myocardium: reverse remodeling and improved long-term prognosis. Eur. J. Cardiothorac. Surg.22, 426–430 (2002).
  • Di Carli MF, Maddahi J, Rokfsav S et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J. Thorac. Cardiovasc. Surg.116, 997–1004 (1998).
  • Canty JM, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium; chronically adapted to ischemia but vulnerable to sudden death. Circ. Res.94, 1142–1149 (2004).
  • Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. J. Am. Med. Assoc.273, 1450–1456 (1995).
  • Gheorghiade M, Colucci WS, Swedberg K. β-blockers in chronic heart failure. Circulation107, 1570–1575 (2003).
  • Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity in patients with severe heart failure. N. Engl. J. Med.341, 709–717 (1999).
  • Pitt B, Remme W, Zannad F et al. Epleronone, a selective aldosterone blocker in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med.348, 1309–1321 (2003).
  • Bonow R. Myocardial viability and prognosis in patients with ischemic left ventricular dysfunction. J. Am. Coll. Cardiol.39, 1159–62 (2002).
  • Cleland JG, Freemantle N, Ball SG et al. The HEArt failure Revascularization Trial (HEART): rationale, design and methodology. Eur. J. Heart Failure5, 295–303 (2003).
  • Granger CB, McMurray JJV, Yusus S et al. Effects of candesartan in patients with chronic heart failure and reduced left ventricular systolic function intolerant to angiotensin-converting enzyme inhibitors: the CHARM-Alternative trial. Lancet362, 772–776 (2003).

Website

  • Surgical Treatments for Ischemic Heart Failure Trial www.clinicaltrials.gov/ct/show/NCT00023595?order = 1 (Accessed December 2004)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.