96
Views
33
CrossRef citations to date
0
Altmetric
Review

Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy

, , , &
Pages 705-715 | Published online: 10 Jan 2014

References

  • Hamilton A, Huang SL, Warnick D et al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: studies in a new experimental model. Circulation 105, 2772–2778 (2002).
  • Unger EC, McCreery TP, Sweitzer RH, Shen D, Wu G. In vitro studies of a new thrombus-specific ultrasound contrast agent. Am. J. Cardiol. 81, 58G–61G (1998).
  • Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423, 153–156 (2003).
  • Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest. Radiol. 33, 886–892 (1998).
  • Alkan-Onyuksel H, Demos SM, Lanza GM et al. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J. Pharm. Sci. 85, 486–490 (1996).
  • Demos SM, Alkan-Onyuksel H, Kane BJ et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol. 33, 867–875 (1999).
  • Wharton T, Wilson LJ. Highly-iodinated fullerene as a contrast agent for x-ray imaging. Bioorg. Med. Chem. 10, 3545–3554 (2002).
  • Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl Acad. Sci. USA 96, 5182–5187 (1999).
  • Weissleder R. Molecular imaging: exploring the next frontier. Radiology 212, 609–614 (1999).
  • Gutierrez F, Brown J, Mirowitz S. Cardiovascular Magnetic Resonance Imaging. Mosby Year Book, St. Louis, USA (1992).
  • Nelson KL, Runge VM. Basic principles of MR contrast. Top. Magn. Reson. Imaging 7, 124–136 (1995).
  • Semelka RC, Lee JK, Worawattanakul S, Noone TC, Patt RH, Ascher SM. Sequential use of ferumoxide particles and gadolinium chelate for the evaluation of focal liver lesions on MRI. J. Magn. Reson. Imaging 8, 670–674 (1998).
  • Scott J, Ward J, Guthrie JA, Wilson D, Robinson PJ. MRI of liver: a comparison of CNR enhancement using high dose and low dose ferumoxide infusion in patients with colorectal liver metastases. Magn. Reson. Imaging 18, 297–303 (2000).
  • Nakayama M, Yamashita Y, Mitsuzaki K et al. Improved tissue characterization of focal liver lesions with ferumoxide-enhanced T1 and T2-weighted MR imaging. J. Magn. Reson. Imaging 11, 647–654 (2000).
  • Imam K, Bluemke DA. MR imaging in the evaluation of hepatic metastases. Magn. Reson. Imaging Clin. N. Am. 8, 741–756 (2000).
  • Kato H, Kanematsu M, Kondo H et al. Ferumoxide-enhanced MR imaging of hepatocellular carcinoma: correlation with histologic tumor grade and tumor vascularity. J. Magn. Reson. Imaging 19, 76–81 (2004).
  • Araki T. SPIO-MRI in the detection of hepatocellular carcinoma. J. Gastroenterol. 35, 874–876 (2000).
  • Nakamura H, Ito N, Kotake F, Mizokami Y, Matsuoka T. Tumor-detecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma. J. Gastroenterol. 35, 849–855 (2000).
  • Stiskal M, Schwickert HC, Demsar F et al. Contrast enhancement in experimental radiation-induced liver injury: comparison of hepatocellular and reticuloendothelial particulate contrast agents. J. Magn. Reson. Imaging 6, 286–290 (1996).
  • Weissleder R, Reimer P, Lee AS, Wittenberg J, Brady TJ. MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. AJR Am. J. Roentgenol. 155, 1161–1167 (1990).
  • Reimer P, Weissleder R, Brady TJ et al. Experimental hepatocellular carcinoma: MR receptor imaging. Radiology 180, 641–645 (1991).
  • Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT, Naghavi M. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-α, interleukin-1β, and interferon-γ. Circulation 107, 1545–1549 (2003).
  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493 (1990).
  • Renkin EM. Multiple pathways of capillary permeability. Circulation Res. 41, 735–743 (1977).
  • van Hinsbergh VWM. Endothelial permeability for macromolecules: mechanistic aspects of pathophysiological modulation. Arterioscler. Thromb. Vasc. Biol. 17, 1018–1023 (1997).
  • Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415–422 (2001).
  • Kanno S, Wu YJ, Lee PC et al. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104, 934–938 (2001).
  • Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).
  • Leenders W, Kusters B, Pikkemaat J et al. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int. J. Cancer 105, 437–434 (2003).
  • Turetschek K, Roberts TP, Floyd E et al. Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model. J. Magn. Reson. Imaging 13, 882–888 (2001).
  • Turetschek K, Huber S, Floyd E et al. MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218, 562–569 (2001).
  • Gellissen J, Axmann Ch, Prescher A, Bohndorf K, Lodemann KP. Extra- and intracellular accumulation of ultrasmall superparamagnetic iron oxides (USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging. Magn. Reson. Imaging 17, 557–567 (1999).
  • Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127, 1670–1677 (2004).
  • Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182, 381–385 (1992).
  • Weissleder R, Moore A, Mahmood U et al. In vivo magnetic resonance imaging of transgenic expression. Nature Med. 6, 351–355 (2000).
  • Dunn JF, Roche MA, Springett R et al. Monitoring angiogenesis in brain using steady-state quantification of δ-R2 with MION infusion. Magn. Reson. Med. 51, 55–61 (2004).
  • Wu EX, Tang H, Wong KK, Wang J. Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J. Magn. Reson. Imaging 19, 50–58 (2004).
  • Hogemann D, Josephson L, Weissleder R, Basilion JP. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug. Chem. 11, 941–946 (2000).
  • Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov A Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122–127 (2002).
  • Koch AM, Reynolds F, Kircher MF, Merkle HP, Weissleder R, Josephson L. Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug. Chem.14, 1115–1121 (2003).
  • Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem.10, 186–191 (1999).
  • Dodd CH, Hsu HC, Chu WJ et al. Normal T-cell response and in vivo magnetic resonance imaging of T-cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods 256, 89–105 (2001).
  • Lewin M, Carlesso N, Tung CH et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18, 410–414 (2000).
  • Schellenberger EA, Bogdanov A Jr, Hogemann D, Tait J, Weissleder R, Josephson L. Annexin V-Clio: a nanoparticle for detecting apoptosis by MRI. Mol. Imaging 1, 102–107 (2002).
  • Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR Molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003).
  • Moffat BA, Reddy GR, McConville P et al. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol. Imaging 2, 324–332 (2003).
  • Tung C-H, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).
  • Bremer C, Tung C-H, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med. 7, 655–656 (2001).
  • Mahmood U, Tung C-H, Bogdanov A Jr, Weissleder R. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213, 866–870 (1999).
  • Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. Optics Letters 26, 893–895 (2001).
  • Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl Acad. Sci. USA 97, 2767–2772 (2000).
  • Josephson L, Kirchner MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem.13, 554–560 (2002).
  • Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63, 8122–8125 (2003).
  • Bulte JW, Zhang S, van Gelderen P et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl Acad. Sci. USA 96, 15256–15261 (1999).
  • Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480–487 (2003).
  • Bulte JWM, Douglas T, Witwer B et al. Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad. Radiol. 9, S332–S335 (2002).
  • Kircher MF, Allport JR, Graves E et al. In vivo High resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors Cancer Res. 63, 6838–6846 (2003).
  • Wunderbaldinger P, Josephson L, Weissleder R. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug. Chem.13, 264–268 (2002).
  • Kraitchman DL, Heldman AW, Atalar E et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293 (2003).
  • Karmarkar PV, Kraitchman DL, Izbudak I et al. MR-trackable intramyocardial injection catheter. Magn. Reson. Med. 51, 1163–1172 (2004).
  • Lanza GM, Wallace KD, Scott MJ et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94, 3334–3340 (1996).
  • Lanza GM, Abendschein DR, Hall CS et al. In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles. J. Am. Soc. Echocardiog. 13, 608–614 (2000).
  • Flacke S, Fischer S, Scott MJ et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104, 1280–1285 (2001).
  • Lanza GM, Lorenz CH, Fischer SE et al. Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent. Academic Radiology 5(Suppl. 1), S173–S176 (1998).
  • Winter PM, Caruthers SD, Yu X et al. Improved molecular imaging contrast agent for detection of human thrombus. Magn. Reson. Med. 50, 411–416 (2003).
  • Morawski AM, Winter P, Crowder KC et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med. 51, 480–486 (2004).
  • Lanza GM, Yu X, Winter PM et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106, 2842–2847 (2002).
  • Winter PM, Caruthers SD, Kassner A et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel ανβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Res. 63, 5838–5843 (2003).
  • Winter PM, Morawski AM, Caruthers SD et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with ανβ3-integrin-targeted nanoparticles. Circulation 108, 2270–2274 (2003).
  • Bangham AD. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 18, 29–95 (1968).
  • Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR. Generation of multilamellar and unilamellar phospholipid vesicles. Chem. Phys. Lipids 40, 89–107 (1986).
  • Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl Acad. Sci. USA 85, 6949–6953 (1988).
  • Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochem. Biophys. Acta 1113, 171–199 (1992).
  • Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 22, 129–150 (2002).
  • Lokling K-E, Skurtveit R, Dyrstad K, Klaveness J, Fossheim SL. Tuning the MR properties of blood-stable pH-responsive paramagnetic liposomes. Int. J. Pharmaceutics 274, 75–83 (2004).
  • Mamot C, Nguyen JB, Pourdehnad M et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J. Neuro-Oncol. 68, 1–9 (2004).
  • Saito R, Bringas JR, McKnight TR et al. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. 64, 2572–2579 (2004).
  • Viglianti BL, Abraham SA, Michelich CR et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn. Reson. Imaging 51, 1153–1162 (2004).
  • Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by ανβ3-targeted magnetic resonance imaging. Nature Med. 4, 623–626 (1998).
  • Hood JD, Bednarski M, Frausto R et al. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002).
  • Wilson SR. Biological applications of fullerene derivatives: a brief overview. In: The Fullerene Handbook. Kadish K, Ruoff R, (Eds), Wiley, NY, USA, 437–465 (2000).
  • Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913–923 (2003).
  • Qingnuan L, Yan X, Xiaodong Z et al. Preparation of (99m)Tc-C(60)(OH)(x) and its biodistribution studies. Nuclear Med. Biol. 29, 707–710 (2002).
  • Mikawa M, Kato H, Okamura M et al. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug. Chem.12, 510–514 (2001).
  • Bolskar RD, Benedetto AF, Husebo LO et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60 [C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125, 5471–5478 (2003).
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63 (2004).
  • Misselwitz B, Schmitt-Willich H, Ebert W, Frenzel T, Weinmann HJ. Pharmacokinetics of Gadomer-17, a new dendritic magnetic contrast agent. Magma 12, 128–134 (2001).
  • Fink C, Kiessling F, Bock M et al. High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J. Magn. Reson. Imaging 18, 59–65 (2003).
  • Staats G, Spuntrup E, Bucker A et al. Interstitial T1-weighted MR lymph fistulography with Gadomer-17 in an experimental animal model. ROFO-Fortschritte auf dem Gebiet der Rontgenstrahlen und Bildgebenden Verfahren 175, 275–281 (2003).
  • Torchia MG, Misselwitz B. Combined MR lymphangiography and MR imaging-guided needle localization of sentinel lymph nodes using Gadomer-17. Am. J. Roentgenol. 179, 1561–1565 (2002).
  • Misselwitz B, Schmitt-Willich H, Michaelis M, Oellinger JJ. Interstitial magnetic resonance lymphography using a polymeric T1 contrast agent: initial experience with Gadomer-17. Invest. Radiol. 37, 146–151 (2002).
  • Sato N, Kobayashi H, Hiraga A et al. Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn. Reson. Med. 46, 1169–1173 (2001).
  • Kobayashi H, Sato N, Hiraga A et al. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn. Reson. Med. 45, 454–460 (2001).
  • Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with antitac monoclonal antibody. Bioconjug. Chem.10, 103–111 (1999).
  • Wiseman GA, Kornmehl E, Leigh B et al. Radiation dosimetry results and safety correlations from 90 Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J. Nucl. Med. 44, 465–474 (2003).
  • Quintana A, Raczka E, Piehler L et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19, 1310–1316 (2002).
  • Malik N, Wiwattanapatapee R, Klopsch R et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control Release 65, 133–148 (2000).
  • Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, Bernstein DI. Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob. Agents Chemother. 44, 2471–2474 (2000).
  • Ihre HR, Padilla De Jesus OL, Szoka FCJ, Frechet JMJ. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug. Chem.13, 443–452 (2002).
  • Padilla De Jesus OL, Ihre HR, Gagne L, Frechet JMJ, Szoka FCJ. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem.13, 453–461 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.