32
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent advances in the identification of genes for human hypertension

, , &
Pages 733-741 | Published online: 10 Jan 2014

References

  • Sproston K, Primatesta P, Sproston K, Primatesta P. Health Survey for England 2003. Risk factors for cardiovascular disease. Volume 2. Department of Health, London, UK (2004).
  • Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet 361(9369), 1629–1641 (2003).
  • Ward R. Familial Aggregation and Genetic Epidemiology of Blood Pressure in Hypertension: Pathophysiology, Diagnosis and Management. Laragh JH, Brenner BM (Eds), Raven Press, NY, USA, 81–100 (1990).
  • Mein CA, Caulfield MJ, Dobson RJ, Munroe PB. Genetics of essential hypertension. Hum. Mol. Genet. 13(Spec. No. 1), R169–R175 (2004).
  • Williams B, Poulter NR, Brown MJ et al. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J. Hum. Hypertens. 18(3), 139–185 (2004).
  • Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).
  • Suarez BK, Hampe CL. Linkage and association. Am. J. Hum. Genet. 54(3), 554–559 (1994).
  • Samani NJ. Genome scans for hypertension and blood pressure regulation. Am. J. Hypertens. 16(2), 167–171 (2003).
  • Mein CA, Caulfield MA, Munroe PB. Selection of candidate genes in hypertension. In: Hypertension: Methods and Protocols. Fennell JP, Baker AH (Eds), Humana Press, NJ, USA, 107–130 (2005).
  • Ranade K, Hinds D, Hsiung CA et al. A genome scan for hypertension susceptibility loci in populations of Chinese and Japanese origins. Am. J. Hypertens. 16(2), 158–162 (2003).
  • Kardia SLR, Rozek LS, Krushkal J et al. Genome-wide linkage analyses for hypertension genes in two ethnically and geographically diverse populations. Am. J. Hypertens. 16(2), 154–157 (2003).
  • Rao DC, Province MA, Leppert MF et al. A genome-wide affected sibpair linkage analysis of hypertension: the HyperGEN network. Am. J. Hypertens. 16(2), 148–150 (2003).
  • Thiel BA, Chakravarti A, Cooper RS et al. A Genome-wide linkage analysis investigating the determinants of blood pressure in whites and african Americans. Am. J. Hypertens. 16(2), 151–153 (2003).
  • Morrison AC, Cooper R, Hunt S et al. Genome scan for hypertension in nonobese African Americans: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am. J. Hypertens. 17(9), 834–838 (2004).
  • Wilk JB, Djousse L, Arnett DK et al. Genome-wide linkage analyses for age at diagnosis of hypertension and early-onset hypertension in the HyperGEN study. Am. J. Hypertens. 17(9), 839–844 (2004).
  • Harrap SB, Wong ZY, Stebbing M, Lamantia A, Bahlo M. Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypes. Physiol. Genomics 8(2), 99–105 (2002).
  • Geller DS, Farhi A, Pinkerton N et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289(5476), 119–123 (2000).
  • de Lange M, Spector TD, Andrew T. Genome-wide scan for blood pressure suggests linkage to chromosome 11, and replication of loci on 16, 17, and 22. Hypertension 44(6), 872–877 (2004).
  • Domanski M, Mitchell G, Pfeffer M et al. Pulse pressure and cardiovascular disease-related mortality: follow-up study of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 287(20), 2677–2683 (2002).
  • DeStefano AL, Larson MG, Mitchell GF et al. Genome-wide scan for pulse pressure in the National Heart, Lung and Blood Institute’s Framingham Heart Study. Hypertension 44(2), 152–155 (2004).
  • Levy D, DeStefano AL, Larson MG et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension 36(4), 477–483 (2000).
  • Camp NJ, Hopkins PN, Hasstedt SJ et al. Genome-wide multipoint parametric linkage analysis of pulse pressure in large, extended Utah pedigrees. Hypertension 42(3), 322–328 (2003).
  • Barkley RA, Chakravarti A, Cooper RS et al. Positional identification of hypertension susceptibility genes on chromosome 2. Hypertension 43(2), 477–482 (2004).
  • Wise LH, Lanchbury JS, Lewis CM. Meta-analysis of genome searches. Ann. Hum. Genet. 63(Pt 3), 263–272 (1999).
  • Levinson DF, Levinson MD, Segurado R, Lewis CM Genome scan meta-analysis of schizophrenia and bipolar disorder, part I: methods and power analysis. Am. J. Hum. Genet. 73(1), 17–33 (2003).
  • Koivukoski L, Fisher SA, Kanninen T et al. Meta-analysis of genome-wide scans for hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3. Hum. Mol. Genet. 13(19), 2325–2332 (2004).
  • Atwood LD, Samollow PB, Hixson JE, Stern MP, MacCluer JW. Genome-wide linkage analysis of blood pressure in Mexican Americans. Genet. Epidemiol. 20(3), 373–382 (2001).
  • Kristjansson K, Manolescu A, Kristinsson A et al. Linkage of essential hypertension to chromosome 18q. Hypertension 39(6), 1044–1049 (2002).
  • Liu W, Zhao W, Chase GA. Genome scan meta-analysis for hypertension. Am. J. Hypertens. 17(12 Pt. 1), 1100–1106 (2004).
  • Stephens JC, Briscoe D, O’Brien SJ. Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am. J. Hum. Genet. 55(4), 809–824 (1994).
  • Zhu X, Luke A, Cooper RS et al. Admixture mapping for hypertension loci with genome-scan markers. Nature Genet. 37(2), 177–181 (2005).
  • Wulfkuhle J, Espina V, Liotta L, Petricoin E. Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur. J. Cancer 40(17), 2623–2632 (2004).
  • Chon H, Gaillard CA, van der Meijden BB et al. Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment. Hypertension 43(5), 947–951 (2004).
  • Portaluppi F, Boari B, Manfredini R. Oxidative stress in essential hypertension. Curr. Pharm. Des. 10(14), 1695–1698 (2004).
  • Schlager G. Selection for blood pressure levels in mice. Genetics 76(3), 537–549 (1974).
  • Fries RS, Mahboubi P, Mahapatra NR et al. Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems. Hypertension 43(6), 1301–1311 (2004).
  • Sivo Z, Malo B, Dutil J, Deng AY. Accelerated congenics for mapping two blood pressure quantitative trait loci on chromosome 10 of Dahl rats. J. Hypertens. 20(1), 45–53 (2002).
  • Palijan A, Lambert R, Dutil J, Sivo Z, Deng AY. Comprehensive congenic coverage revealing multiple blood pressure quantitative trait loci on Dahl rat chromosome 10. Hypertension 42(4), 515–522 (2003).
  • Moujahidine M, Dutil J, Hamet P, Deng AY. Congenic mapping of a blood pressure QTL on chromosome 16 of Dahl rats. Mamm. Genome 13(3), 153–156 (2002).
  • Garrett MR, Zhang X, Dukhanina OI, Deng AY, Rapp JP. Two linked blood pressure quantitative trait loci on chromosome 10 defined by dahl rat congenic strains. Hypertension 38(4), 779–785 (2001).
  • Moujahidine M, Lambert R, Dutil J et al. Combining congenic coverage with gene profiling in search of candidates for blood pressure quantitative trait loci in Dahl rats. Hypertens. Res. 27(3), 203–212 (2004).
  • Okuda T, Sumiya T, Iwai N, Miyata T. Pyridoxine 5´-phosphate oxidase is a candidate gene responsible for hypertension in Dahl-S rats. Biochem. Biophys. Res. Commun. 313(3), 647–653 (2004).
  • Frantz S, Clemitson JR, Bihoreau MT, Gauguier D, Samani NJ. Genetic dissection of region around the Sa gene on rat chromosome 1: evidence for multiple loci affecting blood pressure. Hypertension 38(2), 216–221 (2001).
  • Helkamaa T, Mannisto PT, Rauhala P et al. Resistance to salt-induced hypertension in catechol-O-methyltransferase-gene-disrupted mice. J. Hypertens. 21(12), 2365–2374 (2003).
  • Tsunoda M, Tenhunen J, Tilgmann C, Arai H, Imai K. Reduced membrane-bound catechol-O-methyltransferase in the liver of spontaneously hypertensive rats. Hypertens. Res. 26(11), 923–927 (2003).
  • Gu L, Dene H, Deng AY et al. Genetic mapping of two blood pressure quantitative trait loci on rat chromosome 1. J. Clin. Invest. 97(3), 777–788 (1996).
  • Ngo EO, LePage GR, Thanassi JW, Meisler N, Nutter LM. Absence of pyridoxine-5´-phosphate oxidase (PNPO) activity in neoplastic cells: isolation, characterization, and expression of PNPO cDNA. Biochemistry. 37(21), 7741–7748 (1998).
  • Zimdahl H, Kreitler T, Gosele C, Ganten D, Hubner N. Conserved synteny in rat and mouse for a blood pressure QTL on human chromosome 17. Hypertension 39(6), 1050–1052 (2002).
  • Cook SA, Rosenzweig A. DNA microarrays: implications for cardiovascular medicine. Circ Res. 91(7), 559–564 (2002).
  • Koopmans RP, Insel PA, Michel MC. Pharmacogenetics of hypertension treatment: a structured review. Pharmacogenetics 13(12), 705–713 (2003).
  • Liljedahl U, Karlsson J, Melhus H et al. A microarray minisequencing system for pharmacogenetic profiling of antihypertensive drug response. Pharmacogenetics 13(1), 7–17 (2003).
  • Liljedahl U, Lind L, Kurland L et al. Single nucleotide polymorphisms in the apolipoprotein B and low density lipoprotein receptor genes affect response to antihypertensive treatment. BMC Cardiovasc. Disord. 4(1), 16 (2004).
  • Kurland L, Liljedahl U, Karlsson J et al. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Am. J. Hypertens. 17(1), 8–13 (2004).
  • Davis BR, Ford CE, Boerwinkle E et al. Imputing gene-treatment interactions when the genotype distribution is unknown using case-only and putative placebo analyses: a new method for the Genetics of Hypertension Associated Treatment (GenHAT) study. Stat Med. 23(15), 2413–2427 (2004).
  • Kamatani N, Sekine A, Kitamoto T et al. Large-scale single-nucleotide polymorphism (SNP) and haplotype analyses, using dense SNP Maps, of 199 drug-related genes in 752 subjects: the analysis of the association between uncommon SNPs within haplotype blocks and the haplotypes constructed with haplotype-tagging SNPs. Am. J. Hum. Genet. 75(2), 190–203 (2004).
  • Ahmadi KR, Weale ME, Xue ZY et al. A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nature Genet. 37(1), 84–89 (2005).
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6(2), 95–108 (2005).
  • Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet. 6(2), 109–118 (2005).

Websites

  • International HapMap project www.hapmap.org (Accessed June 2005)
  • Genetics of Hypertension Associated Treatments (GENHAT) www.sph.uth.tmc.edu/ccct/genhat (Accessed June 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.