57
Views
42
CrossRef citations to date
0
Altmetric
Review

Inhibition of 11β-HSD1 as a novel treatment for the metabolic syndrome: do glucocorticoids play a role?

&
Pages 911-924 | Published online: 10 Jan 2014

References

  • Arnaldi G, Angeli A, Atkinson AB et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J. Clin. Endocrinol. Metab. 88(12), 5593–5602 (2003).
  • Nosadini R, Del Prato S, Tiengo A et al. Insulin resistance in Cushing’s syndrome. J. Clin. Endocrinol. Metab. 57(3), 529–536 (1983).
  • Faggiano A, Pivonello R, Spiezia S et al. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J. Clin. Endocrinol. Metab. 88(6), 2527–2533 (2003).
  • •Study demonstrates potential for great impact on cardiovascular disease by lowering glucocorticoid levels.
  • Magiakou MA, Mastorakos G, Zachman K, Chrousos GP. Blood pressure in children and adolescents with Cushing’s syndrome before and after surgical care. J. Clin. Endocrinol. Metab. 82(6), 1734–1738 (1997).
  • Fallo F, Sonino N, Barzon L et al. Effect of surgical treatment on hypertension in Cushing’s syndrome. Am. J. Hypertens. 9(1), 77–80 (1996).
  • Bjorntorp P. Body fat distribution, insulin resistance, and metabolic diseases. Nutrition 13(9), 795–803 (1997).
  • Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect ‘Cushing’s disease of the omentum’? Lancet 349(9060), 1210–1213 (1997).
  • •Authors articulate hypothesis that elevated intracellular glucocorticoid tone in visceral adipose may underlie metabolic syndrome.
  • Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12), 1595–1607 (1988).
  • Assmann G, Schulte H. The PROspective CArdiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am. Heart J. 116(6 Pt. 2), 1713–1724 (1988).
  • Haffner SM, Valdez RA, Hazuda HP et al. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 41(6), 715–722 (1992).
  • Laaksonen DE, Lakka HM, Niskanen LK et al. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am. J. Epidemiol. 156(11), 1070–1077 (2002).
  • Lakka HM, Laaksonen DE, Lakka TA et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21), 2709–2716 (2002).
  • Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM. The metabolic syndrome as predictor of Type 2 diabetes: the San Antonio heart study. Diabetes Care 26(11), 3153–3159 (2003).
  • Isomaa B, Almgren P, Tuomi T et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24(4), 683–689 (2001).
  • Bonora E, Kiechl S, Willeit J et al. Carotid atherosclerosis and coronary heart disease in the metabolic syndrome: prospective data from the Bruneck study. Diabetes Care 26(4), 1251–1257 (2003).
  • Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB Sr, Wilson PW. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 110(4), 380–385 (2004).
  • Malik S, Wong ND, Franklin SS et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110(10), 1245–1250 (2004).
  • Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP. National cholesterol education program versus world health organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio heart study. Circulation 110(10), 1251–1257 (2004).
  • Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third national health and nutrition examination survey. JAMA 287(3), 356–359. (2002).
  • McNeill AM, Rosamond WD, Girman CJ et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 28(2), 385–390 (2005).
  • Golden SH, Folsom AR, Coresh J et al. Risk factor groupings related to insulin resistance and their synergistic effects on subclinical atherosclerosis: the atherosclerosis risk in communities study. Diabetes 51(10), 3069–3076 (2002).
  • Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetes Med. 15(7), 539–553 (1998).
  • World Health Organization: Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation. Part 1: Diagnosis and classification of diabetes mellitus. Geneva, World Health Org. (WHO/NCD/NCS99.2). Geneva, Switzerland (1999).
  • Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285(19), 2486–2497 (2001).
  • Munck A, Naray-Fejes-Toth A. The ups and downs of glucocorticoid physiology. Permissive and suppressive effects revisited. Mol. Cell. Endocrinol. 90(1), C1–C4. (1992).
  • den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler. Thromb. Vasc. Biol. 24(4), 644–649 (2004).
  • Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87(7), 3023–3028 (2002).
  • Samuel VT, Liu ZX, Qu X et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279(31), 32345–32353 (2004).
  • Rubin CS, Hirsch A, Fung C, Rosen OM. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 253(20), 7570–7578 (1978).
  • Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J. Clin. Endocrinol. Metab. 64(4), 832–835 (1987).
  • Livingston JN, Lockwood DH. Effect of glucocorticoids on the glucose transport system of isolated fat cells. J. Biol. Chem. 250(21), 8353–8360 (1975).
  • Olefsky JM. Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J. Clin. Invest. 56(6), 1499–1508 (1975).
  • Grunfeld C, Jones DS. Glucocorticoid-induced insulin resistance in vitro: inhibition of insulin-stimulated methylaminoisobutyric acid uptake. Horm. Metab. Res. 18(3), 149–152 (1986).
  • Ekstrand A, Saloranta C, Ahonen J, Gronhagen-Riska C, Groop LC. Reversal of steroid-induced insulin resistance by a nicotinic-acid derivative in man. Metabolism 41(7), 692–697 (1992).
  • Davani B, Khan A, Hult M et al. Type 1 11β-hydroxysteroid dehydrogenase mediates glucocorticoid activation and insulin release in pancreatic islets. J. Biol. Chem. 275(45), 34841–34844 (2000).
  • Hollingdal M, Juhl CB, Dall R et al. Glucocorticoid induced insulin resistance impairs basal but not glucose entrained high-frequency insulin pulsatility in humans. Diabetologia 45(1), 49–55 (2002).
  • Nobel S, Abrahmsen L, Oppermann U. Metabolic conversion as a pre-receptor control mechanism for lipophilic hormones. Eur. J. Biochem. 268(15), 4113–4125 (2001).
  • Hosfield DJ, Wu Y, Skene RJ et al. Conformational flexibility in crystal structures of human 11β-hydroxysteroid dehydrogenase Type I provide insights into glucocorticoid interconversion and enzyme regulation. J. Biol. Chem. 280(6), 4639–4648 (2005).
  • Ogg D, Elleby B, Norstrom C et al. The crystal structure of guinea-pig 11β-hydroxysteroid dehydrogenase Type 1 provides a model for enzyme-lipid bilayer interactions. J. Biol. Chem. 280(5), 3789–3794 (2005).
  • Zhang J, Osslund TD, Plant MH et al. Crystal structure of murine 11β-hydroxysteroid dehydrogenase 1: An important therapeutic target for diabetes. Biochemistry 44(18), 6948–6957 (2005).
  • Tomlinson JW, Walker EA, Bujalska IJ et al. 11{β}-Hydroxysteroid Dehydrogenase Type 1: a tissue-specific regulator of glucocorticoid response. Endocr. Rev. (2004).
  • Lakshmi V, Monder C. Purification and characterization of the corticosteroid 1β-dehydrogenase component of the rat liver 11β-hydroxysteroid dehydrogenase complex. Endocrinology 123(5), 2390–2398 (1988).
  • Walker EA, Clark AM, Hewison M, Ride JP, Stewart PM. Functional expression, characterization, and purification of the catalytic domain of human 11-β -hydroxysteroid dehydrogenase Type 1. J. Biol. Chem. 276(24), 21343–21350 (2001).
  • Agarwal AK, Tusie-Luna MT, Monder C, White PC. Expression of 11β-hydroxysteroid dehydrogenase using recombinant vaccinia virus. Mol. Endocrinol. 4(12), 1827–1832 (1990).
  • Murphy BE. Specificity of human 11β-hydroxysteroid dehydrogenase. J. Steroid Biochem. Mol. Biol. 14(8), 807–809 (1981).
  • Frey FJ. Kinetics and dynamics of prednisolone. Endocr. Rev. 8(4), 453–473 (1987).
  • Maser E, Bannenberg G. 11β-hydroxysteroid dehydrogenase mediates reductive metabolism of xenobiotic carbonyl compounds. Biochem. Pharmacol. 47(10), 1805–1812 (1994).
  • Maser E. 11β-hydroxysteroid dehydrogenase responsible for carbonyl reduction of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mouse lung microsomes. Cancer Res. 58(14), 2996–3003 (1998).
  • Finckh C, Atalla A, Nagel G, Stinner B, Maser E. Expression and NNK reducing activities of carbonyl reductase and 11β-hydroxysteroid dehydrogenase Type 1 in human lung. Chem. Biol. Interact. 130–132(1–3), 761–773 (2001).
  • Mziaut H, Korza G, Hand AR, Gerard C, Ozols J. Targeting proteins to the lumen of endoplasmic reticulum using N-terminal domains of 11β-hydroxysteroid dehydrogenase and the 50-kDa esterase. J. Biol. Chem. 274(20), 14122–14129 (1999).
  • Atanasov AG, Nashev LG, Schweizer RA, Frick C, Odermatt A. Hexose-6-phosphate dehydrogenase determines the reaction direction of 11β-hydroxysteroid dehydrogenase Type 1 as an oxoreductase. FEBS Lett. 571(1–3), 129–133 (2004).
  • Bujalska IJ, Draper N, Michailidou Z et al. Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11β-hydroxysteroid dehydrogenase Type 1. J. Mol. Endocrinol. 34(3), 675–684 (2005).
  • Kotelevtsev Y, Brown RW, Fleming S et al. Hypertension in mice lacking 11β-hydroxysteroid dehydrogenase Type 2. J. Clin. Invest. 103(5), 683–689 (1999).
  • Spencer RL, Kim PJ, Kalman BA, Cole MA. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic–pituitary–adrenal axis activity. Endocrinology 139(6), 2718–2726 (1998).
  • Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294(5549), 2166–2170 (2001).
  • ••Mice overexpressing hydroxysteroid dehydrogenase (11β-HSD)1 in the adipose develop features of metabolic syndrome.
  • Masuzaki H, Yamamoto H, Kenyon CJ et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J. Clin. Invest. 112(1), 83–90 (2003).
  • Rask E, Olsson T, Soderberg S et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J. Clin. Endocrinol. Metab. 86(3), 1418–1421 (2001).
  • •Obese humans exhibit elevated 11β-HSD1 activity in abdominal subcutaneous adipose tissue.
  • Afdhal NH, Masuzaki H, Turner B, Nasser I, Flier J. Transgenic mice with 11b-hydroxysteroid dehydrogenase Type 1 overexpression in adipocytes develop fatty liver disease. Hepatology 36(4 Part 2), 216A (2002).
  • Rooman R, Koster G, Bloemen R, Gresnigt R, van Buul-Offers SC. The effect of dexamethasone on body and organ growth of normal and IGF-II-transgenic mice. J. Endocrinol. 163(3), 543–552 (1999).
  • Paterson JM, Morton NM, Fievet C et al. Metabolic syndrome without obesity: Hepatic overexpression of 11β-hydroxysteroid dehydrogenase Type 1 in transgenic mice. Proc. Natl Acad. Sci. USA 101(18), 7088–7093 (2004).
  • Kotelevtsev Y, Holmes MC, Burchell A et al. 11β-hydroxysteroid dehydrogenase Type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci USA (PNAS) 94(26), 14924–14929 (1997).
  • ••Deficiency of 11β-HSD1 in mice leads to protection from features of metabolic syndrome.
  • Morton NM, Holmes MC, Fievet C et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11β-hydroxysteroid dehydrogenase Type 1 null mice. J. Biol. Chem. 276(44), 41293–41300 (2001).
  • Morton NM, Paterson JM, Masuzaki H et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11β-hydroxysteroid dehydrogenase Type 1-deficient mice. Diabetes 53(4), 931–938 (2004).
  • Justesen J, Mosekilde L, Holmes M et al. Mice deficient in 11β-hydroxysteroid dehydrogenase Type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology 145(4), 1916–1925 (2004).
  • Hundertmark S, Dill A, Ebert A et al. Foetal lung maturation in 11β-hydroxysteroid dehydrogenase Type 1 knockout mice. Horm. Metab. Res. 34(10), 545–549. (2002).
  • Kershaw EE, Morton NM, Dhillon H et al. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 54(4), 1023–1031 (2005).
  • •Overexpression of 11β-HSD2 in adipose protects from features of metabolic syndrome and recapitulates the phenotype of the 11β-HSD1 knockout mice.
  • Harris HJ, Kotelevtsev Y, Mullins JJ, Seckl JR, Holmes MC. Intracellular regeneration of glucocorticoids by 11β-hydroxysteroid dehydrogenase (11β-HSD)-1 plays a key role in regulation of the hypothalamic-pituitary-adrenal axis: analysis of 11β-HSD-1-deficient mice. Endocrinology 142(1), 114–120 (2001).
  • White PC, Mune T, Agarwal AK. 11β-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr. Rev. 18(1), 135–156 (1997).
  • Phillipou G, Higgins BA. A new defect in the peripheral conversion of cortisone to cortisol. J. Steroid Biochem. Mol. Biol. 22(3), 435–436 (1985).
  • Biason-Lauber A, Suter SL, Shackleton CH, Zachmann M. Apparent cortisone reductase deficiency: a rare cause of hyperandrogenemia and hypercortisolism. Horm. Res. 53(5), 260–266 (2000).
  • Tomlinson JW, Draper N, Mackie J et al. Absence of Cushingoid phenotype in a patient with Cushing’s disease due to defective cortisone to cortisol conversion. J. Clin. Endocrinol. Metab. 87(1), 57–62 (2002).
  • Taylor NF, Bartlett WA, Dawson DJ, Enoch BA. Cortisone reductase deficiency: evidence for a new inborn error in metabolism of adrenal steroids. J. Endocrinol. 102S, 90 (1984).
  • Nordenstrom A, Marcus C, Axelson M, Wedell A, Ritzen EM. Failure of cortisone acetate treatment in congenital adrenal hyperplasia because of defective 11β-hydroxysteroid dehydrogenase reductase activity. J. Clin. Endocrinol. Metab. 84(4), 1210–1213 (1999).
  • Phillipov G, Palermo M, Shackleton CH. Apparent cortisone reductase deficiency: a unique form of hypercortisolism. J. Clin. Endocrinol. Metab. 81(11), 3855–3860 (1996).
  • Jamieson A, Wallace AM, Andrew R et al. Apparent cortisone reductase deficiency: a functional defect in 11β-hydroxysteroid dehydrogenase Type 1. J. Clin. Endocrinol. Metab. 84(10), 3570–3574 (1999).
  • Malunowicz EM, Romer TE, Urban M, Bossowski A. 11β-hydroxysteroid dehydrogenase Type 1 deficiency (‘apparent cortisone reductase deficiency’) in a 6-year-old boy. Horm. Res. 59(4), 205–210 (2003).
  • Draper N, Echwald SM, Lavery GG et al. Association studies between microsatellite markers within the gene encoding human 11β-hydroxysteroid dehydrogenase Type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. J. Clin. Endocrinol. Metab. 87(11), 4984–4990 (2002).
  • Gelernter-Yaniv L, Feng N, Sebring NG, Hochberg Z, Yanovski JA. Associations between a polymorphism in the 11β hydroxysteroid dehydrogenase Type I gene and body composition. Int. J. Obes. Relat. Metab. Disord. 27(8), 983–986 (2003).
  • Nair S, Lee YH, Lindsay RS et al. 11β-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle. Diabetologia 47(6), 1088–1095 (2004).
  • Robitaille J, Brouillette C, Houde A et al. Molecular screening of the 11β-HSD1 gene in men characterized by the metabolic syndrome. Obes. Res. 12(10), 1570–1575 (2004).
  • Draper N, Walker EA, Bujalska IJ et al. Mutations in the genes encoding 11β-hydroxysteroid dehydrogenase Type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nature Genet. 34(4), 434–439 (2003).
  • Hewitt KN, Walker EA, Stewart PM. Minireview: hexose-6-phosphate dehydrogenase and redox control of 11β-hydroxysteroid dehydrogenase Type 1 activity. Endocrinology 146(6), 2539–2543 (2005).
  • San Millan JL, Botella-Carretero JI, Alvarez-Blasco F et al. A Study of the hexose-6-phosphate dehydrogenase gene R453Q and 11β-hydroxysteroid dehydrogenase Type 1 gene 83557insA polymorphisms in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90(7), 4157–4162 (2005).
  • Tomlinson JW, Stewart PM. The functional consequences of 11β-hydroxysteroid dehydrogenase expression in adipose tissue. Horm. Metab. Res. 34(11–12), 746–751 (2002).
  • Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM. Expression of 11β-hydroxysteroid dehydrogenase Type 1 in adipose tissue is not increased in human obesity. J. Clin. Endocrinol. Metab. 87(12), 5630–5635 (2002).
  • Engeli S, Bohnke J, Feldpausch M et al. Regulation of 11β-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes. Res. 12(1), 9–17 (2004).
  • Rask E, Walker BR, Soderberg S et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11β-hydroxysteroid dehydrogenase Type 1 activity. J. Clin. Endocrinol. Metab. 87(7), 3330–3336 (2002).
  • Wake DJ, Rask E, Livingstone DE et al. Local and systemic impact of transcriptional upregulation of 11β-hydroxysteroid dehydrogenase Type 1 in adipose tissue in human obesity. J. Clin. Endocrinol. Metab. 88(8), 3983–3988 (2003).
  • Lindsay RS, Wake DJ, Nair S et al. Subcutaneous adipose 11β-hydroxysteroid dehydrogenase Type 1 activity and messenger ribonucleic acid levels are associated with adiposity and insulinemia in Pima Indians and Caucasians. J. Clin. Endocrinol. Metab. 88(6), 2738–2744 (2003).
  • Westerbacka J, Yki-Jarvinen H, Vehkavaara S et al. Body fat distribution and cortisol metabolism in healthy men: enhanced 5β-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver. J. Clin. Endocrinol. Metab. 88(10), 4924–4931 (2003).
  • Kannisto K, Pietilainen KH, Ehrenborg E et al. Overexpression of 11β-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J. Clin. Endocrinol. Metab. 89(9), 4414–4421 (2004).
  • Hermanowski-Vosatka A, Mundt SS, Lee M et al. Adipose 11βHSD1 activity increases with obesity and fat cell hypertrophy, In: On Control of Adipogenesis and Obesity. Keystone Symposia, Alberta, CA, USA (2004).
  • Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M. Expression of the mRNA coding for 11β-hydroxysteroid dehydrogenase Type 1 in adipose tissue from obese patients: an in situ hybridization study. J. Clin. Endocrinol. Metab. 87(6), 2701–2705 (2002).
  • Mundt SS, Wang Y, Sullivan S et al. In: Depot Difference in Glucocorticoid Metabolism in Human Omental and Subcutaneous Adipose Tissue of Obese Subjects, ENDO 2003. The Endocrinology Society, PA, USA (2003).
  • Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH. Cortisol metabolism in human obesity: impaired cortisone->cortisol conversion in subjects with central adiposity. J. Clin. Endocrinol. Metab. 84(3), 1022–1027 (1999).
  • Sandeep TC, Andrew R, Homer NZ et al. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11β-hydroxysteroid dehydrogenase Type 1 inhibitor carbenoxolone. Diabetes 54(3), 872–879 (2005).
  • Valsamakis G, Anwar A, Tomlinson JW et al. 11β-hydroxysteroid dehydrogenase Type 1 activity in lean and obese males with Type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 89(9), 4755–4761 (2004).
  • Whorwood CB, Donovan SJ, Flanagan D, Phillips DI, Byrne CD. Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 51(4), 1066–1075 (2002).
  • Andrew R, Westerbacka J, Wahren J, Yki-Jarvinen H, Walker BR. The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans. Diabetes 54(5), 1364–1370 (2005).
  • Basu R, Singh RJ, Basu A et al. Obesity and Type 2 diabetes do not alter splanchnic cortisol production in humans. J. Clin. Endocrinol. Metab. 90(7), 3919–3926 (2005).
  • Aldhahi W, Mun E, Goldfine AB. Portal and peripheral cortisol levels in obese humans. Diabetologia 47(5), 833–836 (2004).
  • Livingstone DE, Walker BR. Is 11β-hydroxysteroid dehydrogenase Type 1 a therapeutic target? Effects of carbenoxolone in lean and obese Zucker rats. J. Pharmacol. Exp. Ther. 305(1), 167–172 (2003).
  • Livingstone DE, Jones GC, Smith K et al. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 141(2), 560–563 (2000).
  • Livingstone DE, Kenyon CJ, Walker BR. Mechanisms of dysregulation of 11β-hydroxysteroid dehydrogenase Type 1 in obese Zucker rats. J. Endocrinol. 167(3), 533–539 (2000).
  • Morton NM, Ramage L, Seckl JR. Downregulation of adipose 11β-hydroxysteroid dehydrogenase Type 1 by high-fat feeding in mice: a potential adaptive mechanism counteracting metabolic disease. Endocrinology 145(6), 2707–2712 (2004).
  • Hermanowski-Vosatka A, Gerhold D, Mundt SS et al. PPARα agonists reduce 11β-hydroxysteroid dehydrogenase Type 1 in the liver. Biochem. Biophys. Res. Commun. 279(2), 330–336 (2000).
  • Berger J, Tanen M, Elbrecht A et al. Peroxisome proliferator-activated receptor-γ ligands inhibit adipocyte 11β -hydroxysteroid dehydrogenase Type 1 expression and activity. J. Biol. Chem. 276(16), 12629–12635 (2001).
  • Duplomb L, Lee Y, Wang MY et al. Increased expression and activity of 11β-HSD-1 in diabetic islets and prevention with troglitazone. Biochem. Biophys. Res. Commun. 313(3), 594–599 (2004).
  • Stulnig TM, Oppermann U, Steffensen KR, Schuster GU, Gustafsson JA. Liver X receptors downregulate 11β-hydroxysteroid dehydrogenase Type 1 expression and activity. Diabetes 51(8), 2426–2433 (2002).
  • Cai TQ, Wong B, Mundt SS et al. Induction of 11β-hydroxysteroid dehydrogenase Type 1 but not -2 in human aortic smooth muscle cells by inflammatory stimuli. J. Steroid Biochem. Mol. Biol. 77(2–3), 117–122 (2001).
  • Tomlinson JW, Moore J, Cooper MS et al. Regulation of expression of 11β-hydroxysteroid dehydrogenase Type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology 142(5), 1982–1989 (2001).
  • Hult M, Jornvall H, Oppermann UC. Selective inhibition of human Type 1 11β-hydroxysteroid dehydrogenase by synthetic steroids and xenobiotics. FEBS Lett. 441(1), 25–28 (1998).
  • Ogawa A, Johnson JH, Ohneda M et al. Roles of insulin resistance and β-cell dysfunction in dexamethasone-induced diabetes. J. Clin. Invest. 90(2), 497–504 (1992).
  • Walker BR, Connacher AA, Lindsay RM, Webb DJ, Edwards CR. Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J. Clin. Endocrinol. Metab. 80(11), 3155–3159 (1995).
  • Andrews RC, Rooyackers O, Walker BR. Effects of the 11β-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with Type 2 diabetes. J. Clin. Endocrinol. Metab. 88(1), 285–291 (2003).
  • Fotsch C, Askew BC, Chen JJ. 11β-hydroxysteroid dehydrogenase-1 as a therapeutic target for metabolic diseases. Expert Opin. Ther. Patents 15(3), 289–3003 (2005).
  • Barf T, Vallgarda J, Emond R et al. Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs. Discovery of potent and selective inhibitors of the 11β-hydroxysteroid dehydrogenase Type 1. J Med. Chem. 45(18), 3813–3815 (2002).
  • •Selective nonsteroidal 11β-HSD1 inhibitors with efficacy in murine models of diabetes.
  • Alberts P, Engblom L, Edling N et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase Type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 45(11), 1528–1532 (2002).
  • Alberts P, Nilsson C, Selen G et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase Type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 144(11), 4755–4762 (2003).
  • Olson S, Balkovec J, Gao Y-D et al. Selective inhibitors of 11β-hydroxysteroid dehydrogenase Type 1 Adamantyl triazoles as pharmacological agents for the treatment of metabolic syndrome. In: Molecular Controls of Adipogenesis and Obesity. Keystone Symposia, Alberta, Canada, 329 (2004).
  • Hermanowski-Vosatka A, Balkovec JM, Cheng K et al. 11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J. Exp. Med. 202(4), 517–527 (2005).
  • Plump AS, Smith JD, Hayek T et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2), 343–353 (1992).
  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081), 468–471 (1992).
  • Brem AS, Bina RB, King TC, Morris DJ. Localization of 2 11β-OH steroid dehydrogenase isoforms in aortic endothelial cells. Hypertension 31(1 Pt. 2), 459–462 (1998).
  • Thieringer R, Le Grand CB, Carbin L et al. 11β-hydroxysteroid dehydrogenase Type 1 is induced in human monocytes upon differentiation to macrophages. J. Immunol. 167(1), 30–35 (2001).
  • Kumari M, Grahame-Clarke C, Shanks N et al. Chronic stress accelerates atherosclerosis in the apolipoprotein E deficient mouse. Stress, 6(4), 297–299 (2003).
  • Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21(1), 55–89 (2000).
  • Yeager MP, Guyre PM, Munck AU. Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol. Scand. 48(7), 799–813 (2004).
  • Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Natl Acad. Sci. USA (PNAS) 96(3), 1059–1064 (1999).
  • Galon J, Franchimont D, Hiroi N et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16(1), 61–71 (2002).
  • Vgontzas AN, Chrousos GP. Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol. Metab. Clin. North Am. 31(1), 15–36 (2002).
  • McEwen BS. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).
  • Belanoff JK, Rothschild AJ, Cassidy F et al. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry 52(5), 386–392 (2002).
  • Moisan MP, Seckl JR, Edwards CR. 11β-hydroxysteroid dehydrogenase bioactivity and messenger RNA expression in rat forebrain: localization in hypothalamus, hippocampus, and cortex. Endocrinology 127(3), 1450–1455 (1990).
  • Lakshmi V, Sakai RR, McEwen BS, Monder C. Regional distribution of 11β-hydroxysteroid dehydrogenase in rat brain. Endocrinology 128(4), 1741–1748 (1991).
  • Landfield PW, Waymire JC, Lynch G. Hippocampal aging and adrenocorticoids: quantitative correlations. Science 202(4372), 1098–1102 (1978).
  • Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239(4841 Pt. 1), 766–768 (1988).
  • Yau JL, Noble J, Kenyon CJ et al. Lack of tissue glucocorticoid reactivation in 11β -hydroxysteroid dehydrogenase Type 1 knockout mice ameliorates age-related learning impairments. Proc. Natl Acad. Sci. USA 98(8), 4716–4721 (2001).
  • •11β-HSD1 deficiency in mice improves cognitive functions in aged mice.
  • Sandeep TC, Yau JL, MacLullich AM et al. 11β-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and Type 2 diabetics. Proc. Natl Acad. Sci. USA 101(17), 6734–6739 (2004).
  • de Quervain DJ, Poirier R, Wollmer MA et al. Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Hum. Mol. Genet. 13(1), 47–52 (2004).
  • Vgontzas AN, Bixler EO, Chrousos GP. Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J. Intern. Med. 254(1), 32–44 (2003).
  • Canalis E. Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J. Clin. Endocrinol. Metab. 81(10), 3441–3447 (1996).
  • Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 15(6), 993–1000 (2000).
  • Cooper MS, Walker EA, Bland R et al. Expression and functional consequences of 11β-hydroxysteroid dehydrogenase activity in human bone. Bone 27(3), 375–381 (2000).
  • Bland R, Worker CA, Noble BS et al. Characterization of 11β-hydroxysteroid dehydrogenase activity and corticosteroid receptor expression in human osteosarcoma cell lines. J. Endocrinol. 161(3), 455–464 (1999).
  • Cooper MS, Rabbitt EH, Goddard PE et al. Osteoblastic 11β-hydroxysteroid dehydrogenase Type 1 activity increases with age and glucocorticoid exposure. J. Bone Miner. Res. 17(6), 979–986 (2002).
  • Cooper MS, Blumsohn A, Goddard PE et al. 11β-hydroxysteroid dehydrogenase Type 1 activity predicts the effects of glucocorticoids on bone. J. Clin. Endocrinol. Metab. 88(8), 3874–3877 (2003).
  • David R, Zangwill L, Briscoe D et al. Diurnal intraocular pressure variations: an analysis of 690 diurnal curves. Br. J. Ophthalmol. 76(5), 280–283 (1992).
  • Armaly MF. Dexamethasone ocular hypertension and eosinopenia, and glucose tolerance test. Arch. Ophthalmol. 78(2), 193–197 (1967).
  • Starka L, Obenberger J. Steroids and intraocular pressure. J. Steroid Biochem. Mol. Biol. 7(11–12), 979–983 (1976).
  • Stokes J, Noble J, Brett L et al. Distribution of glucocorticoid and mineralocorticoid receptors and 11β-hydroxysteroid dehydrogenases in human and rat ocular tissues. Invest. Ophthalmol. Vis. Sci. 41(7), 1629–1638 (2000).
  • Rauz S, Walker EA, Shackleton CH et al. Expression and putative role of 11β-hydroxysteroid dehydrogenase isozymes within the human eye. Invest. Ophthalmol. Vis. Sci. 42(9), 2037–2042 (2001).
  • Rauz S, Cheung CM, Wood PJ et al. Inhibition of 11β-hydroxysteroid dehydrogenase Type 1 lowers intraocular pressure in patients with ocular hypertension. QJM 96(7), 481–490 (2003). International Diabetes Foundation metabolic syndrome definition http://wwwidf.org/weedata/docs/metabolic_syndrome_defenition.pdf (Accessed August 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.