84
Views
19
CrossRef citations to date
0
Altmetric
Review

Genetic and environmental influences on malformations of the cardiac outflow tract

&
Pages 1125-1130 | Published online: 10 Jan 2014

References

  • Hutson MR, Kirby ML. Neural crest and cardiovascular development: a 20 year perspective. Birth Defects Res. Part C. Embryo Today 69, 2–13 (2003).
  • Ferencz C, Loffredo CA, Correa-Villasenor A, Wilson PD. Genetic and environmental risk factors of major cardiovascular malformations: the Baltimore Washington Infant Study: 1981–1989. Futura Armonk (1997).
  • Ferencz C, Rubin JD, McCarter RJ et al. Hematologic disorders and congenital cardiovascular malformations: converging lines of research. J. Med. 15(5–6), 337–354 (1984).
  • Digilio MC, Casey B, Toscano A et al. Complete transposition of the great arteries: patterns of congenital heart disease in familial precurrence. Circulation 104(23), 2809–2814 (2001).
  • Franco D, Campione M. The role of Pitx2 during cardiac development. Trends Cardiovasc. Med. 13, 157–163 (2003).
  • Conway SJ, Henderson DJ, Kirby ML, Anderson RH, Copp AJ. Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Cardiovasc. Res. 36, 163–173 (1997).
  • Bruneau BG, Nemer G, Schmitt JP et al. Murine model of Holt Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).
  • Krantz ID, Smith R, Colliton RP et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects. Cell Am. J. Med. Genetics 84, 56–60 (1999).
  • Benson DW, Silberbach GM, Kavanaugh-McHugh A et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 (1999).
  • McElhinney DB, Geiger E, Blinder J et al. NKX 2.5 mutations in patients with congenital heart disease. J. Am. Coll. Cardiol. 42(9), 1650–1655 (2003).
  • Basson CT, Huant T, Lin RC et al. Different TBX5 interactions in heart and limb defined by Holt Oram syndrome mutations. Proc. Natl Acad. Sci. USA 96, 2919–2924 (1999).
  • Rothman KJ, Moore LL, Singer MR et al. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 333, 1369–1373 (1995).
  • Botto LD, Loffredo C, Scanlon KS et al. Vitamin A and cardiac outflow tract defects. Epidemiology 12, 491–496 (2001).
  • Mulder GB, Manley N, Grant J et al. Effects of excess vitamin A on development of cranial neural crest derived structures: a neonatal and embryologic study. Teratology 62, 214–226 (2000).
  • Wilson JG, Warkany J. Cardiac and aortic arch anomalies in the offspring of vitamin A deficient rats correlated with similar human anomalies. Peds. Apr. 5(4), 708–725 (1950).
  • Gruber PJ, Kubalak SW, Pexieder T, Sucov HM, Evans RM, Chien KR. RXR α deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J. Clin. Invest. 98(6), 1332–1343 (1996).
  • Zile MH, Kostetskii I, Yuan S et al. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev. Biol. 223(2), 323–338 (2000).
  • Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Am. J. Med. Genet. 121A, 95–101 (2003).
  • Czeizel AE. Periconceptional folic acid containing multivitamin supplement. Eur. J. Obstet. Reprod. Biol. 78, 151–161 (1998).
  • Junker R, Kotthoff S, Vielhaber H et al. Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiov. Res. 51, 251–254 (2001).
  • Wenstrom KD, Johanning GL, Johnston KE, DuBard M. Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malformations. Am. J. Obstet. Gynecol. 184, 806–812 (2001).
  • Shaw GM, Zhu H, Lammer EJ et al. Genetic variation of infant reduced folate carrier [A80G] and risk of orofacial and conotruncal heart defects. Am. J. Epidemiol. 158, 747–752 (2003).
  • Gelineau van Waes J, Tang L, Aleman F et al. Maternal folate reduces neural crest cell derived conotruncal heart defects in Folbp1 knock out mice.Teratology 65(6), 302 (2002).
  • Goldberg SJ, Lebowitz MD, Graver EJ, Hicks S. An association of human congenital cardiac malformations and drinking water contaminants. J. Am. Coll. Cardiol. 16, 155–164 (1990).
  • Swan SH, Shaw G, Harris JA, Neutra RR. Congenital cardiac anomalies in relation to water contamination in Santa Clara County California 1981–1983. Am. J. Epidemiol. 129, 885–893 (1989).
  • Johnson PD, Dawson BV, Goldberg SJ. Cardiac teratogenicity of trichloroethylene metabolites. JACC 32, 540–545 (1998).
  • Han HS, Ishikawa S, Nazaki Y et al. Morphology and pathogenesis of cardiovascular malformations induced by dichloroethylene [DCE] in chick embryos Showa. Univ. J. Med. Sci. 6, 49–59 (1994).
  • Yu J, Gonzalez S, Rodriguez JI et al. Neural crest-derived defects in experimental congenital diaphragmatic hernia. Pediatr. Surg. Int. 17, 294–298 (2001).
  • Kuribayashi T, Roberts WC. Tetralogy of fallot, truncus arteriosus abnormal myocardial architecture and anomalies of the aortic arch system induced by bis-diamine in rat fetuses. J. Am. Coll. Cardiol. 21, 768–776 (1993).
  • Ritz B, Yu F, Fruin S et al. Ambient air pollution and the risk of birth defects in Southern California. Am. J. Epidemiol. 155, 17–25 (2002).
  • Abushaban L, Al-Hay A, Uthaman B et al. Impact of the Gulf War on congenital heart diseases in Kuwait. Int. J. Cardiol. 93, 157–162 (2004).
  • Bianca S, Dipasquale R, DeLuca G et al. Sex ratio imbalance in transposition of the great arteries and parental agricultural occupation. Reprod. Toxicol. 16, 436 (2002).
  • Loffredo CA, Silbergeld EK, Ferencz C, Zhang J. Association of transposition of the great arteries in infants with maternal exposures to herbicides and rodenticides. Am. J. Epidemiol. 153(6), 529–536 (2001).
  • Loffredo CA and Silbergeld EK. Sex differences in human glutathione-S-transferase genes. Fundame. Appl. Toxicol. 36, 101–102 (1997).
  • Kuehl KS and Loffredo CA. Population-based study of l-transposition of the great arteries: possible associations with environmental factors. Birth Defects Res. Part A: Clin. Mol. Teratol. 67(3), 162–167 (2003).
  • Shaw GM, Nelson V, Iovannisci DM et al. Maternal occupational chemical exposures and biotransformation genotypes as risk factors for selected Congenital Anomalies. Am. J. Epidemiol. 157, 475–482 (2003).
  • Ewing CK, Loffredo CA, Beatty TH. Paternal risk factors for isolated membranous ventricular septal defects. Am. J. Med. Genet. 71(1), 42–46 (1997).
  • Engel RR, Smith AH. Arsenic in drinking water and mortality from vascular disease. Arch. Environ. Health 49, 418–427 (1994).
  • Zierler S, Theodore M, Cohen A, Rothman KJ. Chemical quality of maternal drinking water and congenital heart disease. Int. J. Epidemiol. 17(3), 589–594 (1998).
  • Smoak IW. Brief hypoglycemia alters morphology, function, and metabolism of the embryonic mouse heart. Reprod. Toxicol. 11, 495–502 (1997).
  • Loffredo CA. Epidemiology of cardiovascular malformations: prevalence and risk factors. Am. J. Med. Genet. 97(4), 319–325 (2000).
  • Delise BL, Chalier C, Hodge T. Teratogenicity of an endothelin receptor-A antagonist in rats and rabbits. Teratology 63, 283 (2001).
  • Okuda H, Ohta R, Wada A et al. Persistence of phenobarbital induced cardiovascular abnormalities in the rat to the postnatal stage. Teratology 50, 20B (1994).
  • Sonoda T, Fukunga K, Tashiro S, Obha K, Fujimoto T. Carbamazepine-induced cardiovascular abnormalities in chick embryos. Congen. Anom. 3, 115–120 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.