31
Views
5
CrossRef citations to date
0
Altmetric
Drug Profile

Conivaptan: a selective vasopressin antagonist for the treatment of heart failure

&
Pages 17-23 | Published online: 10 Jan 2014

References

  • Lloyd-Jones DM, Larson MG, Leip MS et al. Lifetime risk for developing congestive heart failure – the Framingham heart study. Circulation 106, 3068–3072 (2002).
  • Adams KF, Fonarow GC, Emerman CL et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 149, 209–16 (2005).
  • Cuffe MS, Califf RM, Adams KF et al. Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Investigators. Short-term intravenous milrinone for acute exacerbation of chronic heart failure. JAMA 287, 1541–1547 (2002).
  • Cleland JGF, Gemmel I, Khand A et al. Is the prognosis of heart failure improving? Eur. J. Heart Fail. 1, 229–241 (1999).
  • Klein L, O’Connor CM,Leimberger JD et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure. Results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) study. Circulation 111, 2454–2460 (2005).
  • Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 341, 577–585 (1999).
  • Packer M, Bristow MR, Cohn JN et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N. Engl. J. Med. 334, 1349–1355 (1996).
  • The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).
  • Cohn JN, Tognoni G, for the Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).
  • Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341, 709–717 (1999).
  • Lee CR, Watkins M, Patterson JH et al. Vasopressin: a new target for the treatment of heart failure. Am. Heart J. 146, 9–18 (2003).
  • Jessup M, Brozena S. Heart Failure. N. Engl. J. Med. 348, 2007–2018 (2003).
  • Ishikawa SE, Schrier RW. Pathophysiological roles of arginine vasopressin and aquaporin-2 in impaired water excretion. Clin. Endocrinol. 58, 1–17 (2003).
  • Robertson GL, Shelton RL, Athar S et al. The osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).
  • Walker BR, Childs ME, Adams EM. Direct cardiac effects of vasopressin: role of V1-and V2-vasopressinergic receptors. Am. J. Physiol. 255, H261–H265 (1988).
  • Ebert TJ, Cowley AW, Skelton M. Vasopressin reduces cardiac function and augments cardiopulmonary baroreflex resistance increases in man. J. Clin. Invest. 77, 1136–1142 (1986).
  • Khayyal MA, Eng C, Franzen D et al. Effects of vasopressin on the coronary circulation: reserve and regulation during ischaemia. Am. J. Physiol. 248, H516–H522 (1985).
  • Reilly BA, Brostrom MA, Brostrom CO et al. Regulation of protein synthesis in ventricular myocytes by vasopressin. The role of sarcoplasmic/endoplasic reticulum Ca2+ stores. J. Biol. Chem. 273, 3747–3755 (1998).
  • Chandrashekhar Y, Prahash AJ, Sen S et al. The role of arginine vasopressin and its receptors in the normal and failing rat heart. J. Mol. Cell. Cardiol. 35, 495–504 (2003).
  • Abel A, Wittau N, Wieland T et al. Cell cycle-dependent coupling of the vasopressin V1a receptor to different G-proteins. J. Biol. Chem. 275, 32543–32551 (2000).
  • Thibonnier M, Auzan C, Madhun Z et al. Molecular cloning, sequencing and functional expression of a cDNA encoding the human V1a vasopressin receptor. J. Biol. Chem. 269, 3304–3310 (1994).
  • VanDerBent V, Church DJ, Vallotton MB et al. [Ca2+ ] i and protein kinase C in vasopressin-induced prostacyclin release in rat cardiomyocytes. Am. J. Physiol. 266, H597–H605 (1994).
  • Nielsen S, Kwon TH, Christensen BM et al. Physiology and pathophysiology of renal aquaporins. J. Am. Soc. Nephrol. 10, 647–663 (1999).
  • Nielson S, Chou CL, Marples D et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl Acad. Sci. USA 92, 1013–1017 (1995).
  • Ishikawa S, Saito T, Kasono K. Pathological role of aquaporin-2 in impaired water excretion and hyponatremia. J Neuroendocrinol 16, 293–296 (2004).
  • Schrier RW, Cadnapaphornchai MA. Renal aquaporin water channels: from molecules to human disease. Prog. Biophys. Mol. Biol. 81, 117–131 (2003).
  • Martin PY, Abraham WT, Lieming X et al. Selective V2-receptor vasopressin antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J. Am. Soc. Nephrol. 10, 2165–2170 (1999).
  • Nielson S, Terris J, Andersen D et al. Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc. Natl Acad. Sci. USA 94, 5450–5455 (1997).
  • Xu DL, Martin PY, Ohara M et al. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J. Clin. Invest. 99, 1500–1505 (1997).
  • Szatalovitz, VL. Arnold PE, Chaimovitz C et al. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N. Engl. J. Med. 305, 263–266 (1981).
  • Goldsmith SR, Francis GS, Cowley AW et al. Increased plasma arginine vasopressin in patients with congestive heart failure. J. Am. Coll. Cardiol. 1, 1385–1390 (1983).
  • Riegger AJG. Vasopressin and renin in high output heart failure of rats: hemodynamic effects of elevated plasma hormone levels. J. Card. Pharm. 7, 1–8 (1985).
  • Francis GS, Benedict C, Johnstone DE et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure: a substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82, 1724–1729 (1990).
  • Rouleau JL, Packer M, Moye L et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J. Am. Col. Cardiol. 24, 583–591 (1994).
  • Uretsky BF, Verbalis JG, Generalovich T et al. Plasma vasopressin response to osmotic and hemodynamic stimuli in heart failure. Am. J. Phys. 248, H396–H401 (1985).
  • Goldsmith SR, Francis GS, Cowley AW et al. Hemodynamic effects of infused arginine vasopressin in congestive heart failure. J. Am. Coll. Cardiol. 8, 779–783 (1986).
  • Tahara A, Tomura Y, Wada K et al. Effect of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc. Res. 38, 198–205 (1998).
  • Nakamura Y, Haneda T, Osaki J et al. Hypertrophic growth of cultured neonatal rat heart cells mediated by vasopressin V1a receptor. Eur. J. Pharmacol. 391, 39–48 (2000).
  • Fukuzawa J, Haneda T, Kikucki K et al. Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor. Mol. Cell Biochem. 195, 93–98 (1999).
  • Nicod P, Waeber B, Bussien JP et al. Acute hemodynamic effect of a vascular antagonist of vasopressin in patients with congestive heart failure. Am. J. Cardiol. 55, 1043–1047 (1985).
  • Nicod P, Biollaz J, Waeber B et al. Hormonal, global, and regional haemodynamic responses to a vascular antagonist of vasopressin in patients with congestive heart failure with and without hyponatraemia. Br. Heart J. 56, 433–439 (1986).
  • Yamamura Y, Ogawa H, Chihara T et al. OPC-21268, an orally effective, non-peptide vasopressin V1 receptor antagonist. Science 252, 572–574 (1991).
  • Gheorghiade M, Niazi I, Ouyang J et al. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure. Circulation 107, 2690–96 (2003).
  • Gheorghiade M, Gattis WA, O’Conner CM et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure. JAMA 291, 1963–1971 (2004).
  • Tahara A, Tomura Y, Wada K et al. Pharmacological profile of YM-087, a novel potent vasopressin V1a and V2 receptor antagonist, in vitro and in vivo. J. Pharmacol. Exp. Ther. 282, 301–308 (1997).
  • Burnier M, Fricker AF, Hayoz D et al. Pharmacokinetic and pharmacodynamic effects of YM087, a combined V1/V2 vasopressin receptor antagonist in normal subjects. Eur. J. Clin. Pharmacol. 55, 633–637 (1999).
  • Yatsu T, Tomura Y, Tahara A et al. Pharmacological profile of YM087, a novel nonpeptide dual vasopressin V1a and V2 receptor antagonist, in dogs. Eur. J. Pharmacol. 321, 225–230 (1997).
  • Tahara A, Tomura Y, Koh-ichi W et al. Effect of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc. Res. 38, 198–205 (1998).
  • Yatsu T. Cardiovascular and renal effects of conivaptan hydrochloride (YM087), a vasopressin V1a and V2 receptor antagonist, in dogs with pacing-induced congestive heart failure. Eur. J. Pharmacol. 321, 225–230 (1997).
  • Wada K, Fujimori A, Matsukawa U et al. Intravenous administration of conivaptan hydrochloride improves cardiac hemodynamics in rats with myocardial infarction-induced congestive heart failure. Eur. J. Pharmacol. 507, 145–151 (2005).
  • Naitoh M, Risvanis J, Balding L et al. Neurohormonal antagonism in heart failure; beneficial effects of vasopressin V1a and V2 receptor blockade and ACE inhibition. Cardiov. Res. 54, 51–57 (2002)
  • Burrell LM, Phillips PA, Risvanis J et al. Long-term effects of nonpeptide vasopressin V2 antagonist OPC-31260 in heart failure in the rat. Am. J. Physiol.. 44, H176–H182 (1998).
  • Udelson JE, Smith WB, Hendrix GH et al. Acute hemodynamic effects of conivaptan, a dual V1a and V2 vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 104, 2417–23 (2001).
  • Gheorghiade M, Gattis WA, Barbagelata A et al. Rationale and study design for a multicenter, randomized, double-blind, placebo-controlled study of the effects of tolvaptan on the acute and chronic outcomes of patients hospitalized with worsening congestive heart failure. Am. Heart J. 145, S51–S54 (2003).
  • Gheorghiade M, Orlandi C, Burnett JC et al. Rationale and design of the multicenter, randomized, double-blind, placebo-blind, placebo-controlled study to evaluate the efficacy of vasopressin antagonism in heart failure: Outcome study with Tolvaptan (EVEREST). J. Card. Fail. 11, 260–269 (2005).
  • Russell SD, Selaru P, Pyne DA et al. Rationale for use of an exercise end point and design for the ADVANCE (A Dose evaluation of a Vasopressin ANtagonist in CHF patients undergoing Exercise) trial. Am. Heart J. 145, 179–186 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.