79
Views
16
CrossRef citations to date
0
Altmetric
Review

Role of nutrition in the development of the fetal cardiovascular system

&
Pages 211-225 | Published online: 10 Jan 2014

References

  • Harding JE. The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol. 30, 15–23 (2001).
  • Hawkins P, Steyn C, Ozaki T, Saito T, Noakes DE, Hanson MA. Effect of maternal undernutrition in early gestation on ovine fetal blood pressure and cardiovascular reflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279(1), R340–R348 (2000).
  • Lucas A. Long-term programming effects of early nutrition – implications for the preterm infant. J. Perinatol. 25(Suppl. 2), S2–S6 (2005).
  • Godfrey KM, Barker DJP. Fetal nutrition and adult disease. Am. J. Clin. Nutr. 71(Suppl. 5), S1344–S1352 (2000).
  • Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adulthood. Lancet 341(8850), 938–941 (1993).
  • Barker DJP. Fetal origins of coronary heart disease. BMJ 311, 171–174 (1995).
  • Hindmarsh PC, Geary MP, Rodeck CH, Kingdom JC, Cole TJ. Intrauterine growth and its relationship to size and shape at birth. Pediatr. Res. 52(2), 263–268 (2002).
  • Barker DJP. Fetal origins of cardiovascular disease. Ann. Med. 31(Suppl. 1), 3–6 (1999).
  • Davis L, Thornburg K, Giraud G. Anemia as a programming agent in the fetal heart. J. Physiol. 565(1), 35–41 (2005).
  • Schwartz J, Morrison JL. Impact and mechanisms of fetal physiological programming. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(1), R11–R15 (2005).
  • Granger JP. Maternal and fetal adaptations during pregnancy: lessons in regulatory and integrative physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283(6), R1289–R1292 (2002).
  • Barker DJP. Fetal nutrition and cardiovascular disease in later life. Br. Med. Bull. 53(1), 96–108 (1997).
  • Green LR. Programming of endocrine mechanisms of cardiovascular control and growth. J. Soc. Gynecol. Investig. 8(2), 57–68 (2001).
  • Barker DJP. In utero programming of chronic disease. Clin. Sci. 95(2), 115–128 (1998).
  • Hoet JJ, Hanson MA. Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J. Physiol. 514(3), 617–627 (1999).
  • Adair LS, Kuzawa CW, Borja J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 104, 1034–1039 (2001).
  • Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strengths of the effects and biological basis. Int. J. Epidemiol. 31(6), 1235–1239 (2002).
  • Barker DJP. The fetal origins of hypertension. J. Hyperten. 14(Suppl. 5), S117–S120 (1996).
  • Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease later in life: an overview. Twin Res. 4(5), 293–298 (2001).
  • Gilbert JS, Lang AL, Grant AR, Nijland MJ. Maternal nutrient restriction in sheep: hypertension and decreased nephron number in offspring at 9 months of age. J. Physiol. 565(1), 137–147 (2005).
  • Nwagwu MO, Cook A, Langley-Evans SC. Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br. J. Nutr. 83(1), 79–85 (2000).
  • Henriksen T, Clausen T. The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet. Gynecol. Scand. 81, 112–116 (2002).
  • Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360, 659–665 (2002).
  • Johansson M, Rasmussen F. Birthweight and body mass index in young adulthood: the Swedish young male twins study. Twin Res. 4, 400–405 (2001).
  • Krishnaswamy K, Naidu AN, Prasad MP, Reddy GA. Fetal nutrition and adult chronic disease. Nutr. Rev. 60, S35–S39 (2002).
  • Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease – the hypothesis revisited. BMJ 319, 245–249 (1999).
  • Bartley M, Power C, Blane D, Smith GD, Shipley M. Birth weight and later socioeconomic disadvantage: evidence from the 1958 British cohort study. BMJ 309(6967), 1475–1478 (1994).
  • Matthes JW, Lewis PA, Davies DP, Bethel JA. Relation between birth weight at term and systolic blood pressure in adolescence. BMJ 308(6936), 1074–1077 (1994).
  • Kramer MS, Joseph KS. Enigma of fetal/infant-origins hypothesis. Lancet 348(9037), 1254–1255 (1996).
  • Jones SE, Nyengaard JR. Low birth weight and cardiovascular disease: myth or reality? Curr. Opin. Lipidiol. 9(4), 309–312 (1998).
  • Simmons R. Developmental origins of adult metabolic disease: concepts and controversies. Trends Endocrinol. Metab. 16(8), 390–394 (2005).
  • Tu K, West R, Ellison GT, Gilthorpe MS. Why evidence for the fetal origins of adult disease might be a statistical artifact: the “reversal paradox” for the relation between birth weight and blood pressure in later life. Am. J. Epidemiol. 161(1), 27–32 (2005).
  • Aerts L, Van Assche FA. Is gestational diabetes an acquired condition? J. Dev. Physiol. 1, 219–225 (1979).
  • Stewart RJC, Sheppard H, Preece R, Waterlow JC. The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br. J. Nutr. 43, 403–412 (1980).
  • McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85(2), 571–633 (2005).
  • Gluckman PD, Hanson MA, Morton SM, Pinal CS. Life-long echoes – a critical analysis of the developmental origins of adult disease model. Biol. Neonate. 87(2), 127–139 (2005).
  • Morgan HD, Sutherland HE, Martin DIK, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genetics 23, 314–318 (1999).
  • Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957 (1998).
  • Rump P, Popp-Snijders C, Heine RJ, Hornstra G. Components of the insulin resistance syndrome in seven-year-old children: relations with birth weight and polyunsaturated fatty acid content of umbilical cord plasma phospholipids. Diabetologia. 45(3), 349–355 (2002).
  • Barker DJP. The development origins of well-being. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359(1449), 1359–1366 (2004).
  • Palinski W, Napoli C. The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J. 16(11), 1348–1360 (2002).
  • Cruickshank JK, Mzayek F, Liu L et al. Origins of the “black/white” difference in blood pressure: roles of birth weight, postnatal growth, early blood pressure, and adolescent body size: the Bogalusa heart study. Circulation 111(15), 1932–1937 (2005).
  • Fall CH, Yajnik CS, Rao S, Davies AA, Brown N, Farrant HJ. Micronutrients and fetal growth. J. Nutr. 133(5 Suppl. 2), 1747S–1756S (2003).
  • Bamberg C, Kalache KD. Prenatal diagnosis of fetal growth restriction. Semin. Fetal Neonatal Med. 9(5), 387–394 (2004).
  • Merialdi M, Carroli G, Villar J et al. Nutritional interventions during pregnancy for the prevention or treatment of impaired fetal growth: an overview of randomized controlled trials. J. Nutr. 133(5 Suppl. 2), 1626S–1631S (2003).
  • Godfrey KM. The role of the placenta in fetal programming – a review. Placenta 23(Suppl A), S20–S27 (2002).
  • Luo ZC, Fraser WD, Julien P et al. Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med. Hypotheses 66(1), 38–44 (2006).
  • Regnault TRH, Galan HL, Parker TA, Anthony RV. Placental development in normal and compromised pregnancies – a review. Placenta 23(16 Suppl. A), S119–S129 (2002).
  • Redmer DA, Wallace JM, Reynolds LP. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest. Anim. Endocrinol. 27(3), 199–217 (2004).
  • Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ. 312(7028), 410–414 (1996).
  • O’Brien PMS, Wheeler T, Barker DJP. Fetal programming – influences on development and disease in later life. O’Brien PMS, Wheeler T, Barker DJP (Eds.), Royal Society of Obstertricians and Gynaecologists Press, London, UK (1999).
  • Naeye RL. Do placental weights have clinical significance? Human Path. 18, 387–391 (1987).
  • Thornburg KL. Physiological development of the cardiovascular system in utero. In: Fetal Origins of Cardiovascular and Lung Disease. Barker DJP (Ed.). National Institutes of Health Monograph Series/151, Marcel Dekker, NY, USA, 97–139(2001).
  • Hawkins P, Steyn C, McGarrigle HH et al. Cardiovascular and hypothalamic–pituitary–adrenal axis development in late gestation fetal sheep and young lambs following modest maternal nutrient restriction in early gestation. Reprod. Fertil. Dev. 12(7–8), 443–456 (2000).
  • Phillips DIW. Fetal growth and programming of the hypothalamic–pituitary–adrenal axis. Clin. Exp. Pharmacol. Physiol. 28(11), 967–970 (2001).
  • Hawkins P, Steyn C, McGarrigle HHG et al. Effect of maternal nutrient restriction in early gestation on development of the hypothalamic–pituitary–adrenal axis in fetal sheep at 0.8–0.9 of gestation. J. Endocrin. 163, 553–561 (1999).
  • Liggins GC. The role of cortisol in preparing the fetus for birth. Rep. Fert. Develop. 6, 141–150 (1994).
  • Fowden AL. Endocrine regulation of fetal growth. Rep. Fert. Develop. 7, 351–363 (1995).
  • Tangalakis K, Coghlan JP, Connell J et al. Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp. Physiol. 77, 709–717 (1992).
  • Edwards LJ, Coulter CL, Symonds ME, McMillen IC. Prenatal undernutrition, glucocorticoids and the programming of adult hypertension. Clin. Exp. Pharmacol. Physiol. 28(11), 938–941 (2001).
  • Edwards LJ, McMillen IC. Impact of maternal undernutrition during the periconceptual period, fetal number, and fetal sex on the development of the hypothalamo–pituitary adrenal axis in sheep during late gestation. Biol Reprod. 66, 1562–1569 (2002).
  • Lumbers ER, Boyce AC, Joulianos G et al. Effects of cortisol on cardiac myocytes and on expression on cardiac genes in fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(3), R567–R574 (2005).
  • Seckl JR, Nyiernda MJ, Walker BR, Chapman KE. Glucocorticoids and fetal programming. Biochem. Soc. Trans. 27(2), 74–78 (1999).
  • Rudolph AM, Roman C, Gournay V. Perinatal myocardial DNA and protein changes in the lamb: effect of cortisol in the fetus. Pediatr. Res. 46(2), 141–146 (1999).
  • Law CM, Shiell AW. Is blood pressure related to birth weight? The strength of evidence from a systematic review of the literature. J. Hyperten. 14(8), 935–941 (1996).
  • Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci. 86, 217–222 (1994).
  • Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr. Res. 49(4), 460–467 (2001).
  • Langley-Evans SC, Sherman RC, Welham SJ, Nwagwu MO, Gardner DS, Jackson AA. Intrauterine programming of hypertension: the role of the renin–angiotensin system. Biochem. Soc. Trans. 27(2), 88–93 (1999).
  • Langley-Evans SC. Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc. Nutr. Soc. 60(4), 505–513 (2001).
  • McMullen S, Gardner DS, Langley-Evans SC. Prenatal programming of angiotensin II type 2 receptor expression in the rat. Br. J. Nutr. 91(1), 133–140 (2004).
  • McMullen S, Langley-Evans SC. Maternal low-protein diet in rat pregnancy programs blood pressure through sex-specific mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(1), R85–R90 (2005).
  • Veille JC, Hanson R, Sivakoff M, Hoen H, Ben-Ami M. Fetal cardiac size in normal, intrauterine growth retarded, and diabetic pregnancies. Am. J. Perinatol. 10(4), 275–279 (1993).
  • Vijayakumar M, Fall CH, Osmond C, Barker DJ. Birth weight, weight at one year, and left ventricular mass in adult life. Br. Heart J. 73(4), 363–367 (1995).
  • Vonnahme KA, Hess BW, Hansen TR et al. Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol. Reprod. 69(1), 133–140 (2003).
  • Galan HL, Hussey MJ, Chung M, Chyu JK, Hobbins JC, Battaglia FC. Doppler velocimetry of growth-restricted fetuses in an ovine model of placental insufficiency. Am. J. Obstet. Gynecol. 178(3), 451–456 (1998).
  • Dong F, Ford SP, Fang CX, Nijland MJ, Nathanielsz PW, Ren J. Maternal nutrient restriction during early to mid gestation up regulates cardiac insulin-like growth factor (IGF) receptors associated with enlarged ventricular size in fetal sheep. Growth Horm. IGF Res. 15, 291–295 (2005).
  • Schnabel P, Mies F, Nohr T, Geisler M, Bohm M. Differential regulation of phospholipase C-β isozymes in cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 275(1), 1–6 (2000).
  • Shiell AW, Campbell-Brown M, Haselden S, Robinson S, Godfrey KM, Barker DJ. High-meat, low-carbohydrate diet in pregnancy. Hypertension 38(6), 1282–1288 (2001).
  • Wichi RB, Souza SB, Casarini DE, Morris M, Barreto-Chaves ML, Irigoyen MC. Increased blood pressure in the offspring of diabetic mothers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(5), R1129–R1133 (2005).
  • Jolly M, Bertie J, Gray R et al. Increased leucine turnover in women during the third trimester of uncomplicated pregnancy. Metabolism 53(5), 545–549 (2004).
  • Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc. Nutr. Soc. 63(3), 397–403 (2004).
  • Cheema KK, Dent MR, Saini HK, Aroutiounova N, Tappia PS. Prenatal exposure to maternal undernutrition induces adult cardiac dysfunction. Br. J. Nutr. 93, 471–477 (2005).
  • Tappia PS, Nijjar M, Mahay A, Aroutiounova N, Dhalla NS. Phospholipid profile of developing heart of rats exposed to low protein diet in pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289(5), R1400–R1406 (2005).
  • Jackson AA, Dunn RL, Marchand MC, Langley-Evans SC. Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin. Sci. 103(6), 633–639 (2002).
  • Pardi G, Marconi AM, Cetin I. Placental–fetal interrelationship in IUGR fetuses – a review. Placenta 23(Suppl. A), S136–S141 (2002).
  • Das UN. A perinatal strategy to prevent coronary heart disease. Nutrition 19(11–12), 1022–1027 (2003).
  • Al MD, van Houwelingen AC, Hornstra G. Long-chain polyunsaturated fatty acids, pregnancy, and pregnancy outcome. Am. J. Clin. Nutr. 71(1 Suppl.), 285S–291S (2000).
  • Cetin I, Giovannini N, Alvino G et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal–maternal relationships. Pediatr. Res. 52(5), 750–755 (2002).
  • Warshaw JB, Kimura RE. Cellular energy metabolism during fetal development. Dev. Biol. 33(1), 224–228 (1973).
  • Villar J, Abalos E, Nardin JM, Merialdi M, Carroli G. Strategies to prevent and treat pre-eclampsia: evidence from randomized controlled studies. Semin. Nephrol. 24(6), 607–615 (2004).
  • Gillman MW, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Lipshultz SE. Maternal calcium intake and offspring blood pressure. Circulation 110(4), 1990–1995 (2004).
  • Hatton DC, Harrison-Hohner J, Coste S, Reller M, McCarron D. Gestational calcium supplementation and blood pressure in the offspring. Am. J. Hypertens. 16(10), 801–805 (2003).
  • Shah D, Sachdev HP. Maternal micronutrients and fetal outcome. Indian J. Pediatr. 71(11), 985–990 (2004).
  • Shah D, Sachdev HP. Effect of gestational zinc deficiency on pregnancy outcomes: summary of observation studies and zinc supplementation trials. Br. J. Nutr. 85(Suppl. 2), S101–S108 (2001).
  • Pathak P, Kapil U. Role of trace elements of zinc, copper and magnesium during pregnancy and its outcome. Indian J. Pediatr. 71(11), 1003–1005 (2004).
  • Temsah R, Nemer M. GATA factors and transcriptional regulation of cardiac natriuretic peptide genes. Regul. Pept. 128(3), 177–185 (2005).
  • Andrews GK, Lee DK, Ravindra R, Lichtlen P, Sirito M, Sawadogo M, Schaffner W. The transcription factors MTF-1 and USF1 cooperate to regulate mouse metallothionein-1 expression in response to the essential metal zinc in visceral endoderm cells during early development. EMBO J. 20(5), 1114–1122 (2001).
  • Duffy JY, Baines D, Overmann GJ, Keen CL, Daston GP. Repeated administration of α-hederin results in alterations in maternal zinc status and adverse developmental outcome in the rat. Teratology 56(5), 327–334 (1997).
  • Keen CL, Clegg MS, Hanna LA et al. The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J. Nutr. 133(5 Suppl. 2), 1597S–1605S (2003).
  • Elsherif L, Ortines RV, Saari JT, Kang YJ. Congestive heart failure in copper-deficient mice. Exp. Biol. Med. 228(7), 811–817 (2003).
  • Chen X, Jennings DB, Medeiros DM. Impaired cardiac mitochondrial membrane potential and respiration in copper-deficient rats. J. Bioenerg. Biomembr. 34(5), 397–406 (2002).
  • Roy-Clavel E, Picard S, St-Louis J, Brochu M. Induction of intrauterine growth restriction with low-sodium diet fed to pregnant rats. Am. J. Obstet. Gynecol. 180, 608–613 (1999).
  • Battista MC, Oligny LL, St-Louis J, Brochu M. Intrauterine growth restriction in rats associated with hypertension and renal dysfunction in adulthood. Am. J. Physiol. Endocrinol. Metab. 283(1), E124–E131 (2002).
  • Battista MC, Calvo E, Chorvatova A, Comte B, Corbeil J, Brochu M. Intra-uterine growth restriction and the programming of left ventricular remodeling in female rats. J. Physiol. 565(1), 197–205 (2005).
  • Mulder GB, Manley N, Grant J et al. Effects of excess vitamin A on development of cranial neural crest-derived structures: a neonatal and embryologic study. Teratology 62(4), 214–226 (2000).
  • Han H-C, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J. Physiol. 558(1), 111–121 (2004).
  • Adachi S, Ito H, Tamamori M, Tanaka M, Marumo F, Hiroe M. Skeletal and smooth muscle α-actin mRNA in endomyocardial biopsy samples of dilated cardiomyopathy patients. Life Sci. 63(20), 1779–1791 (1998).
  • Aihara Y, Kurabayashi M, Saito Y et al. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension 36(1), 48–53 (2000).
  • Nozato T, Ito H, Tamamori M et al. G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II. Jpn Circ. J. 64(8), 595–601 (2000).
  • Taimor G, Schluter K, Piper HM. Hypertrophy-associated gene induction after β-adrenergic stimulation in adult cardiomyocytes. J. Mol. Cell. Cardiol. 33(3), 503–511 (2001).
  • Egnaczyk GF, Pomonis JD, Schmidt JA et al. Proteomic analysis of the reactive phenotype of astrocytes following endothelin-1 exposure. Proteomics 3(5), 689–698 (2003).
  • Li JM, Poolman RA, Brooks G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am. J. Physiol. Heart Circ. Physiol. 275(3 Pt 2), H814–H822 (1998).
  • Yao QJ, Jia CY, Chen B et al. Expression of microtubule destabilizer-oncoprotein18/stathmin gene in the hypertrophic scar before and after the healing of the deep partial thickness burn wounds. Zhonghua. Shao. Shang. Za. Zhi. 19(Suppl.), 15–17 (2003).
  • Osgerby JC, Wathes DC, Howard D, Gadd TS. The effect of maternal undernutrition on ovine fetal growth. J. Endocrinol. 173(1), 131–141 (2002).
  • Kalache KD, Ojutiku D, Nishina H, Green LR, Hanson MA. Mild maternal undernutrition in the first half of ovine pregnancy influences placental morphology but not fetal Doppler flow velocity waveforms and fetal heart size. J. Perinat. Med. 29(4), 286–292 (2001).
  • Kingdom JC, McQueen J, Connell JM, Whittle MJ. Fetal angiotensin II and vascular (type I) angiotensin receptors in pregnancies complicated by intrauterine growth retardation. Br. J. Obstet. Gynaecol. 100(5), 476–482 (1993).
  • Gilbert JS, Lang AL, Nijland MJ. Maternal nutrient restriction and the fetal left ventricle: decreased angiotensin receptor expression. Rep. Bio. Endo. 3, 27 (2005).
  • Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25 (1997).
  • Jensen EC, Gallaher BW, Breier BH, Harding JE. The effect of chronic maternal cortisol infusion on the late-gestation fetal sheep. J. Endocrin. 174, 27–36 (2002).
  • Bispham J, Gopalakrishnan GS, Dandrea J et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144(8), 3575–3585 (2003).
  • Hanson M, Gluckman P, Bier D, Report on the 2nd world congress on fetal origins of adult disease, Brighton, UK, June 7–10, 2003. Pediatr Res. 55(5), 894–897 (2004).
  • Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J. Physiol. 565(1), 3–8 (2005).
  • Wallace JM, Bourke DA, Aitken RP, Milne JS, Hay WW. Placental glucose transport in growth-restricted pregnancies induced by overnourished adolescent sheep. J. Physiol. 547, 85–94 (2003).
  • Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science 299, 853–855 (2003).
  • Castro LC, Avina RL. Maternal obesity and pregnancy outcomes. Curr. Opin. Obstet. Gynecol. 14, 601–606 (2002).
  • Kirkham C, Harris S, Grzybowski S. Evidence-based prenatal care: part I. General prenatal care and counseling issues. Am. Fam. Physician. 71(7), 1307–1316 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.