144
Views
37
CrossRef citations to date
0
Altmetric
Review

Renovation of the injured heart with myocardial tissue engineering

, &
Pages 239-252 | Published online: 10 Jan 2014

References

  • Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl. 1), SI32–SI34 (1999).
  • Sun Y, Kiani MF, Postlethwaite AE, Weber KT. Infarct scar as living tissue. Basic Res. Cardiol. 97, 343–347 (2002).
  • Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94, 1543–1553 (2004).
  • Ertl G, Frantz S. Wound model of myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 288, H981–H983 (2005).
  • Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108, 1395–403 (2003).
  • Etzion S, Kedes LH, Kloner RA, Leor J. Myocardial regeneration: present and future trends. Am. J. Cardiovasc. Drugs 1, 233–244 (2001).
  • Laflamme MA, Murry CE. Regenerating the heart. Nature Biotechnol. 23, 845–856 (2005).
  • Leor J, Barbash IM. Cell transplantation and genetic engineering: new approaches to cardiac pathology. Expert Opin. Biol. Ther. 3, 1023–1039 (2003).
  • Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann. Intern. Med. 140, 729–737 (2004).
  • Minatoguchi S, Takemura G, Chen XH et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109, 2572–2580 (2004).
  • Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).
  • Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100, 12313–12318 (2003).
  • Matsuura K, Nagai T, Nishigaki N et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem. 279, 11384–11391 (2004).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95, 911–921 (2004).
  • Dow J, Simkhovich BZ, Kedes L, Kloner RA. Washout of transplanted cells from the heart: A potential new hurdle for cell transplantation therapy. Cardiovasc. Res. 67, 301–307 (2005).
  • Reinecke H, Murry CE. Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. J. Mol. Cell. Cardiol. 34, 251–253 (2002).
  • Etzion S, Battler A, Barbash IM et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J. Mol. Cell. Cardiol. 33, 1321–1330 (2001).
  • Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ. Res. 97, 8–15 (2005).
  • Rabkin E, Schoen FJ. Cardiovascular tissue engineering. Cardiovasc. Pathol. 11, 305–317 (2002).
  • Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 104, 2063–2068 (2001).
  • Kelley ST, Malekan R, Gorman JH 3rd et al. Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction. Circulation 99, 135–142 (1999).
  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation 100, II63–II69 (1999).
  • Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li RK. Optimal biomaterial for creation of autologous cardiac grafts. Circulation 106, I176–I182 (2002).
  • Hench LL, Polak JM. Third-generation biomedical materials. Science 295, 1014–1017 (2002).
  • Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 428, 487–492 (2004).
  • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 24, 4353–4364 (2003).
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).
  • Humphries MJ, Akiyama SK, Komoriya A, Olden K, Yamada KM. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion. J. Cell. Biol. 103, 2637–2647 (1986).
  • Griffith LG, Lopina S. Microdistribution of substratum-bound ligands affects cell function: hepatocyte spreading on PEO-tethered galactose. Biomaterials 19, 979–986 (1998).
  • Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).
  • Tiwari A, Salacinski HJ, Punshon G, Hamilton G, Seifalian AM. Development of a hybrid cardiovascular graft using a tissue engineering approach. FASEB J.16,791–796 (2002).
  • Pratt AB, Weber FE, Schmoekel HG, Muller R, Hubbell JA. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol. Bioeng. 86, 27–36 (2004).
  • Nguyen H, Qian JJ, Bhatnagar RS, Li S. Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem. Biophys. Res. Commun. 311, 179–186 (2003).
  • Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell. Sci. 115, 1423–1433 (2002).
  • Kim MR, Jeong JH, Park TG. Swelling induced detachment of chondrocytes using RGD-modified poly(N-isopropylacrylamide) hydrogel beads. Biotechnol. Prog. 18, 495–500 (2002).
  • Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J. Biomed. Mater. Res. 60, 86–93 (2002).
  • Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710–723 (2002).
  • Lee KY, Peters MC, Anderson KW, Mooney DJ. Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998–1000 (2000).
  • Kehat I, Kenyagin-Karsenti D, Snir M et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).
  • Swijnenburg RJ, Tanaka M, Vogel H et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112, I166–I172 (2005).
  • Scheubel RJ, Zorn H, Silber RE et al. Age-dependent depression in circulating endothelial progenitor cells inpatients undergoing coronary artery bypass grafting. J. Am. Coll. Cardiol. 42, 2073–2080 (2003).
  • Rauscher FM, Goldschmidt-Clermont PJ, Davis BH et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108, 457–463 (2003).
  • Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity? J. Am. Coll. Cardiol. 42, 2081–2082 (2003).
  • Menasche P. Cellular transplantation: hurdles remaining before widespread clinical use. Curr. Opin. Cardiol. 19, 154–161 (2004).
  • Smits PC, van Geuns RJ, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. Clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42, 2063–2069 (2003).
  • Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109, 3154–3157 (2004).
  • Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363, 783–784 (2004).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
  • Mummery C, Ward-Van Oostwaard D, Doevendans P et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).
  • Takahashi T, Lord B, Schulze PC et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916 (2003).
  • Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25, 1639–1647 (2004).
  • Leor J, Cohen S. Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann. NY Acad. Sci. 1015, 312–319 (2004).
  • Cohen S, Leor J. Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: constructing a living human heart patch. Sci. Am. 291, 44–51 (2004).
  • Eschenhagen T, Fink C, Remmers U et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J.11,683–694 (1997).
  • Zimmermann WH, Didie M, Wasmeier GH et al. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106, I151–I157 (2002).
  • Zimmermann WH, Schneiderbanger K, Schubert P et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–30 (2002).
  • Shimizu T, Yamato M, Isoi Y et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40 (2002).
  • Shimizu T, Yamato M, Akutsu T et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J. Biomed. Mater. Res. 60, 110–117 (2002).
  • Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 80, 305–312 (2002).
  • Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 8, 175–188 (2002).
  • Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–H178 (2001).
  • Carrier RL, Papadaki M, Rupnick M et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64, 580–589 (1999).
  • Bursac N, Papadaki M, Cohen RJ et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277, H433–H444 (1999).
  • Akins RE, Boyce RA, Madonna ML et al. Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 5, 103–118 (1999).
  • Bursac N, Papadaki M, White JA, Eisenberg SR, Vunjak-Novakovic G, Freed LE. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9, 1243–1253 (2003).
  • Kofidis T, Lenz A, Boublik J et al. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials 24, 5009–5014 (2003).
  • Kofidis T, Akhyari P, Boublik J et al. In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124, 63–69 (2002).
  • Radisic M, Park H, Shing H et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. PNAS 0407817101 (2004).
  • Radisic M, Yang L, Boublik J et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H507–H516 (2004).
  • Leor J, Aboulafia-Etzion S, Dar A et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102, III56–III61 (2000).
  • Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68, 106–114 (2000).
  • Zimmermann WH, Eschenhagen T. Cardiac tissue engineering for replacement therapy. Heart Fail. Rev. 8, 259–269 (2003).
  • Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J.14,669–679 (2000).
  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157–161 (2003).
  • McDevitt TC, Angello JC, Whitney ML et al. In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J. Biomed. Mater. Res. 60, 472–479 (2002).
  • McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. 66A, 586–595 (2003).
  • Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–H178 (2001).
  • Akhyari P, Fedak PW, Weisel RD et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106, I137–I142 (2002).
  • Gonen-Wadmany M, Gepstein L, Seliktar D. Controlling the cellular organization of tissue-engineered cardiac constructs. Ann. NY Acad. Sci. 1015, 299–311 (2004).
  • Colton CK. Implantable biohybrid artificial organs. Cell Transplant 4, 415–436 (1995).
  • Zandonella C. Tissue engineering: the beat goes on. Nature 421, 884–886 (2003).
  • Sodian R, Sperling JS, Martin DP et al. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 6, 183–188 (2000).
  • Dohmen PM, Ozaki S, Verbeken E, Yperman J, Flameng W, Konertz WF. Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc. Thorac. Ann. 10, 25–30 (2002).
  • Krupnick AS, Kreisel D, Engels FH et al. A novel small animal model of left ventricular tissue engineering. J. Heart Lung Transplant. 21, 233–243 (2002).
  • Matsubayashi K, Fedak PW, Mickle DA, Weisel RD, Ozawa T, Li RK. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108(Suppl. 1), II219–II225 (2003).
  • Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907–921 (2001).
  • Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. J. Biomater. Sci. Polym. Ed. 15, 701–726 (2004).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 109, 2692–2697 (2004).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part I: angiogenic cytokines. Circulation 109, 2487–2491 (2004).
  • Epstein SE, Kornowski R, Fuchs S, Dvorak HF. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 104, 115–119 (2001).
  • Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).
  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. 65A, 489–497 (2003).
  • Peters MC, Isenberg BC, Rowley JA, Mooney DJ. Release from alginate enhances the biological activity of vascular endothelial growth factor. J. Biomater. Sci. Polym. Ed. 9, 1267–1278 (1998).
  • Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J. Biomater. Sci. Polym. Ed. 15, 543–562 (2004).
  • Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte ssurvival and spatial reorganization. Implications for Cardiac Regeneration. Circulation 01.CIR.0000140667.37070.07 (2004).
  • Park HJ, Yoo JJ, Kershen RT, Moreland R, Atala A. Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J. Urol. 162, 1106–1109 (1999).
  • Epstein SE, Stabile E, Kinnaird T, Lee CW, Clavijo L, Burnett MS. Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation 109, 2826–2831 (2004).
  • Davis ME, Motion JP, Narmoneva DA et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111, 442–450 (2005).
  • Elisseeff J. Injectable cartilage tissue engineering. Expert Opin. Biol. Ther. 4, 1849–1859 (2004).
  • Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10, 403–409 (2004).
  • Bootle-Wilbraham CA, Tazzyman S, Thompson WD, Stirk CM, Lewis CE. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis 4, 269–275 (2001).
  • van Hinsbergh VW, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis. Ann. NY Acad. Sci. 936, 426–437 (2001).
  • Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44, 654–660 (2004).
  • Ryu JH, Kim IK, Cho SW et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26, 319–326 (2005).
  • Kofidis T, De Bruin JL, Hoyt G et al. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J. Thorac. Cardiovasc. Surg. 128, 571–578 (2004).
  • Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112, I173–I177 (2005).
  • Dai W, Wold LE, Dow JS, Kloner RA. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46, 714–719 (2005).
  • Anversa P, Sussman MA, Bolli R. Molecular genetic advances in cardiovascular medicine: focus on the myocyte. Circulation 109, 2832–2838 (2004).
  • Kamelger FS, Marksteiner R, Margreiter E et al. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 25, 1649–1655 (2004).
  • Li RK. Cell transplantation to improve heart function: cell or matrix. Yonsei Med. J. 45(Suppl.), S72–S73 (2004).
  • Wu X, Rabkin-Aikawa E, Guleserian KJ et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287, H480–H487 (2004).
  • Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–46 (2003).
  • Krupnick AS, Kreisel D, Szeto WY, Popma SH, Rosengard BR. A murine model of left ventricular tissue engineering. J. Heart Lung Transplant. 20. 197–198 (2001).
  • Kadner A, Zund G, Maurus C et al. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur. J. Cardiothorac. Surg. 25, 635–641 (2004).
  • Li RK, Yau TM, Weisel RD et al. Construction of a bioengineered cardiac graft. J. Thorac. Cardiovasc. Surg. 119, 368–375 (2000).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnol. 22, 1282–1289 (2004).
  • Lanza R, Moore MA, Wakayama T et al. Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circ. Res. 94, 820–827 (2004).
  • Chandy T, Rao GH, Wilson RF, Das GS. The development of porous alginate/elastin/PEG composite matrix for cardiovascular engineering. J. Biomater. Appl. 17, 287–301 (2003).
  • Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44, 654–660 (2004).
  • Stock UA, Mayer JE Jr. Tissue engineering of cardiac valves on the basis of PGA/PLA co-polymers. J. Long Term Eff. Med. Implants 11, 249–260 (2001).
  • Pego AP, Siebum B, van Luyn MJ et al. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering. Tissue Eng. 9, 981–994 (2003).
  • Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr. Opin. Biotechnol. 15, 430–434 (2004).
  • Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 105, 151–163 (2005).
  • Calvillo L, Latini R, Kajstura J et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl Acad. Sci. USA 100, 4802–4806 (2003).
  • Takano H, Ohtsuka M, Akazawa H et al. Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction. Curr. Pharm. Des. 9, 1121–1127 (2003).
  • Wang Y, Ahmad N, Wani MA, Ashraf M. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J. Mol. Cell. Cardiol. 37, 1041–1052 (2004).
  • Jayasankar V, Woo YJ, Bish LT et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 108(Suppl. 1), II230–II236 (2003).
  • Musaro A, Giacinti C, Borsellino G et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc. Natl Acad. Sci. USA 101, 1206–1210 (2004).
  • Zou Y, Takano H, Mizukami M et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 108, 748–753 (2003).
  • Hiasa K-i, Ishibashi M, Ohtani K et al. Gene transfer of stromal cell-derived factor-1{α} enhances Ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109, 2454–2461 (2004).
  • Bock-Marquette I, Saxena A, White MD, Michael Dimaio J, Srivastava D. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472 (2004).
  • Laguens R, Cabeza Meckert P, Vera Janavel G et al. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Ther. 9, 1676–1681 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.