349
Views
58
CrossRef citations to date
0
Altmetric
Review

Role of β-adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment

&
Pages 417-432 | Published online: 10 Jan 2014

References

  • Chan HW, Smith NJ, Hannan RD, Thomas WG. Tackling the EGFR in pathological tissue remodelling. Pulm. Pharmacol. Ther.19(1), 74–78 (2006).
  • Hunt SA, Abraham WT, Chin MH et al. ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart failure in the adult – summary article: a report of the american college of cardiology/american heart association task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation112, 1825–1852 (2005).
  • Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature415, 206–212 (2002).
  • Esposito G, Rapacciuolo A, Naga Prasad SV, Rockman HA. Cardiac hypertrophy: role of G-protein-coupled receptors. J. Card. Fail.8, S409–S414 (2002).
  • Movsesian MA. Altered cAMP-mediated signalling and its role in the pathogenesis of dilated cardiomyopathy. Cardiovasc. Res.62, 450–459 (2004).
  • Bers DM, Guo T. Calcium signaling in cardiac ventricular myocytes. Ann. NY Acad. Sci.1047, 86–98 (2005).
  • Adamcova M, Pelouch V. Isoforms of troponin in normal and diseased myocardium. Physiol. Res.48, 235–247 (1999).
  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G-protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci.27, 107–144 (2004).
  • Slotkin TA, Auman JT, Seidler FJ. Ontogenesis of β-adrenoceptor signaling: implications for perinatal physiology and for fetal effects of tocolytic drugs. J. Pharmacol. Exp. Ther.306, 1–7 (2003).
  • Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by β-arrestins. Science308, 512–517 (2005).
  • Perrino C, Naga Prasad SV, Schroder JN, Hata JA, Milano C, Rockman HA. Restoration of β-adrenergic receptor signaling and contractile function in heart failure by disruption of the βARK1/phosphoinositide 3-kinase complex. Circulation111, 2579–2587 (2005).
  • Maurice DH, Palmer D, Tilley DG et al. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol. Pharmacol.64, 533–546 (2003).
  • Engelhardt S, Bohm M, Erdmann E, Lohse MJ. Analysis of β-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of β1-adrenergic receptor mRNA in heart failure. J. Am. Coll. Cardiol.27, 146–154 (1996).
  • Headley VV, Tanveer R, Greene SM, Zweifach A, Port JD. Reciprocal regulation of β-adrenergic receptor mRNA stability by mitogen activated protein kinase activation and inhibition. Mol. Cell Biochem.258, 109–119 (2004).
  • Nienaber JJ, Tachibana H, Naga Prasad SV et al. Inhibition of receptor-localized PI3K preserves cardiac β-adrenergic receptor function and ameliorates pressure overload heart failure. J. Clin. Invest.112, 1067–1079 (2003).
  • Zeiders JL, Seidler FJ, Slotkin TA. Ontogeny of regulatory mechanisms for β-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. J. Mol. Cell Cardiol.29, 603–615 (1997).
  • Zheng M, Zhu W, Han Q, Xiao RP. Emerging concepts and therapeutic implications of β-adrenergic receptor subtype signaling. Pharmacol. Ther.108(3), 257–268 (2005).
  • Zhang T, Maier LS, Dalton ND et al. The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res.92, 912–919 (2003).
  • Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA96, 7059–7064 (1999).
  • Pavoine C, Defer N. The cardiac β2-adrenergic signalling a new role for the cPLA2. Cell Signal.17, 141–152 (2005).
  • Steinberg SF. β(2)-adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J. Mol. Cell Cardiol.37, 407–415 (2004).
  • Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the β2-adrenergic receptor to different G-proteins by protein kinase A. Nature390, 88–91 (1997).
  • Ait-Mamar B, Cailleret M, Rucker-Martin C et al. The cytosolic phospholipase A2 pathway, a safeguard of β2-adrenergic cardiac effects in rat. J. Biol. Chem.280, 18881–18890 (2005).
  • Tevaearai HT, Koch WJ. Molecular restoration of β-adrenergic receptor signaling improves contractile function of failing hearts. Trends Cardiovasc. Med.14, 252–256 (2004).
  • Dorn GW, Tepe NM, Lorenz JN, Koch WJ, Liggett SB. Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαθ-overexpressing mice. Proc. Natl Acad. Sci. USA96, 6400–6405 (1999).
  • Gauthier C, Langin D, Balligand JL. β3-adrenoceptors in the cardiovascular system. Trends Pharmacol. Sci.21, 426–431 (2000).
  • Varghese P, Harrison RW, Lofthouse RA, Georgakopoulos D, Berkowitz DE, Hare JM. β(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J. Clin. Invest.106, 697–703 (2000).
  • Gauthier C, Leblais V, Kobzik L et al. The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Invest.102, 1377–1384 (1998).
  • Cheng HJ, Zhang ZS, Onishi K, Ukai T, Sane DC, Cheng CP. Upregulation of functional β(3)-adrenergic receptor in the failing canine myocardium. Circ. Res.89, 599–606 (2001).
  • Kohout TA, Takaoka H, McDonald PH et al. Augmentation of cardiac contractility mediated by the human β(3)-adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation104, 2485–2491 (2001).
  • Zhu WZ, Chakir K, Zhang S et al. Heterodimerization of β1- and β2-adrenergic receptor subtypes optimizes b-adrenergic modulation of cardiac contractility. Circ. Res.97, 244–251 (2005).
  • Lavoie C, Mercier JF, Salahpour A et al. β1/β2-adrenergic receptor heterodimerization regulates β2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem.277, 35402–35410 (2002).
  • Breit A, Lagace M, Bouvier M. Hetero-oligomerization between β2- and β3-adrenergic receptors generates a β-adrenergic signaling unit with distinct functional properties. J. Biol. Chem.279, 28756–28765 (2004).
  • Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy. Cardiovasc. Res.63, 391–402 (2004).
  • Small KM, McGraw DW, Liggett SB. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu. Rev. Pharmacol. Toxicol.43, 381–411 (2003).
  • Mialet PJ, Rathz DA, Petrashevskaya NN et al. β 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat. Med.9, 1300–1305 (2003).
  • Yancy CW. Comprehensive treatment of heart failure: state-of-the-art medical therapy. Rev. Cardiovasc. Med.6 (Suppl. 2), S43–S57 (2005).
  • Fischmeister R. Is cAMP good or bad? Depends on where it's made. Circ. Res.98, 582–584 (2006).
  • Lehnart SE, Wehrens XH, Reiken S et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell123, 25–35 (2005).
  • Dodge-Kafka KL, Soughayer J, Pare GC et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature437, 574–578 (2005).
  • Reiter MJ. Cardiovascular drug class specificity: β-blockers. Prog. Cardiovasc. Dis.47, 11–33 (2004).
  • Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ. Res.92, 904–911 (2003).
  • Bers DM. Beyond β blockers. Nat. Med.11, 379–380 (2005).
  • Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P. Identification and expression of δ-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ. Res.84, 713–721 (1999).
  • Kirchhefer U, Schmitz W, Scholz H, Neumann J. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc. Res.42, 254–261 (1999).
  • Zhang R, Khoo MS, Wu Y, Yang Y et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat. Med.11, 409–417 (2005).
  • Zhu WZ, Wang SQ, Chakir K et al. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J. Clin. Invest.111, 617–625 (2003).
  • Lader AS, Xiao YF, Ishikawa Y et al. Cardiac Gsa overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway. Proc. Natl Acad. Sci. USA95, 9669–9674 (1998).
  • Wang W, Zhu W, Wang S et al. Sustained β1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ. Res.95, 798–806 (2004).
  • Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ. Structure and mechanism of the G-protein-coupled receptor kinases. J. Biol. Chem.268, 23735–23738 (1993).
  • Hata JA, Williams ML, Koch WJ. Genetic manipulation of myocardial β-adrenergic receptor activation and desensitization. J. Mol. Cell Cardiol.37, 11–21 (2004).
  • Iaccarino G, Koch WJ. Transgenic mice targeting the heart unveil G-protein-coupled receptor kinases as therapeutic targets. Assay. Drug Dev. Technol.1, 347–355 (2003).
  • Leineweber K, Rohe P, Beilfuss A et al. G-protein-coupled receptor kinase activity in human heart failure: effects of b-adrenoceptor blockade. Cardiovasc. Res.66, 512–519 (2005).
  • Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ. Reciprocal in vivo regulation of myocardial G-protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation98, 1783–1789 (1998).
  • Freeman K, Colon-Rivera C, Olsson MC et al. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am. J. Physiol. Heart Circ. Physiol.280, H151–H159 (2001).
  • Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA. Cardiac βARK1 inhibition prolongs survival and augments b blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA98, 5809–5814 (2001).
  • Rockman HA, Chien KR, Choi DJ et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA95, 7000–7005 (1998).
  • Manning BS, Shotwell K, Mao L, Rockman HA, Koch WJ. Physiological induction of a β-adrenergic receptor kinase inhibitor transgene preserves ss-adrenergic responsiveness in pressure-overload cardiac hypertrophy. Circulation102, 2751–2757 (2000).
  • Tachibana H, Naga Prasad SV, Lefkowitz RJ, Koch WJ, Rockman HA. Level of β-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation111, 591–597 (2005).
  • Luttrell LM, Ferguson SS, Daaka Y et al. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science283, 655–661 (1999).
  • Lynch MJ, Baillie GS, Mohamed A, Li X et al. RNA Silencing Identifies PDE4D5 as the functionally relevant camp phosphodiesterase interacting with βarrestin to control the protein kinase A/AKAP79-mediated switching of the β2-adrenergic receptor to activation of ERK in HEK293B2 cells. J. Biol. Chem.280, 33178–33189 (2005).
  • Goodman OB Jr, Krupnick JG, Santini F et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature383, 447–450 (1996).
  • Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem.275, 23120–23126 (2000).
  • Luttrell LM, Roudabush FL, Choy EW et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl Acad. Sci. USA98, 2449–2454 (2001).
  • McDonald PH, Chow CW, Miller WE et al. β-arrestin2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science290, 1574–1577 (2000).
  • Tohgo A, Choy EW, Gesty-Palmer D et al. The stability of the G-protein-coupled receptor-β-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem.278, 6258–6267 (2003).
  • Rapacciuolo A, Suvarna S, Barki-Harrington L et al. Protein kinase A and G-protein-coupled receptor kinase phosphorylation mediates β-1 adrenergic receptor endocytosis through different pathways. J. Biol. Chem.278, 35403–35411 (2003).
  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science294, 1307–1313 (2001).
  • Shah BH, Catt KJ. Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrinol. Metab.15, 241–243 (2004).
  • Kim J, Eckhart AD, Eguchi S, Koch WJ. β-adrenergic receptor-mediated DNA synthesis in cardiac fibroblasts is dependent on transactivation of the epidermal growth factor receptor and subsequent activation of extracellular signal-regulated kinases. J. Biol. Chem.277, 32116–32123 (2002).
  • Luttrell LM. Composition and function of G-protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J. Mol. Neurosci.26, 253–264 (2005).
  • Kobayashi H, Narita Y, Nishida M, Kurose H. β-arrestin2 enhances β2-adrenergic receptor-mediated nuclear translocation of ERK. Cell Signal.17, 1248–1253 (2005).
  • Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci.30, 194–204 (2005).
  • Prasad SV, Perrino C, Rockman HA. Role of phosphoinositide 3-kinase in cardiac function and heart failure. Trends Cardiovasc. Med.13, 206–212 (2003).
  • Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA. Protein kinase activity of phosphoinositide 3-kinase regulates β-adrenergic receptor endocytosis. Nat. Cell Biol.7, 785–796 (2005).
  • Naga Prasad SV, Barak LS, Rapacciuolo A, Caron MG, Rockman HA. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by β-adrenergic receptor kinase 1. A role in receptor sequestration. J. Biol. Chem.276, 18953–18959 (2001).
  • Shioi T, Kang PM, Douglas PS et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J.19, 2537–2548 (2000).
  • Luo J, McMullen JR, Sobkiw CL et al. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol. Cell. Biol.25, 9491–9502 (2005).
  • McMullen JR, Shioi T, Zhang L et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA100, 12355–12360 (2003).
  • Ackah E, Yu J, Zoellner S et al. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis. J. Clin. Invest.115, 2119–2127 (2005).
  • Nagoshi T, Matsui T, Aoyama T et al. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J. Clin. Invest.115, 2128–2138 (2005).
  • Esposito G, Rapacciuolo A, Naga Prasad SV et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation105, 85–92 (2002).
  • Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem.275, 4693–4698 (2000).
  • Perrino C, Naga Prasad SV, Patel M, Wolf MJ, Rockman HA. Targeted inhibition of β-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves β-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J. Am. Coll. Cardiol.45, 1862–1870 (2005).
  • Crackower MA, Oudit GY, Kozieradzki I et al. Regulation of myocardial contractility and cell size by distinct PI3K–PTEN signaling pathways. Cell110, 737–749 (2002).
  • Kerfant BG, Gidrewicz D, Sun H, Oudit GY, Penninger JM, Backx PH. Cardiac sarcoplasmic reticulum calcium release and load are enhanced by subcellular cAMP elevations in PI3Kγ-deficient mice. Circ. Res.96, 1079–1086 (2005).
  • Patrucco E, Notte A, Barberis L et al. PI3Kγ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell118, 375–387 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.