23
Views
2
CrossRef citations to date
0
Altmetric
Review

Targeting angiogenesis versus myogenesis with cardiac cell therapy

&
Pages 745-753 | Published online: 10 Jan 2014

References

  • Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev.85, 1373–1416 (2005).
  • Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest.115, 572–583 (2005).
  • Simons M. Angiogenesis: where do we stand now? Circulation111, 1556–1566 (2005).
  • Roe MT, Ohman EM, Maas AC et al. Shifting the open-artery hypothesis downstream: the quest for optimal reperfusion. J. Am. Coll. Cardiol.37, 9–18 (2001).
  • Wu KC, Zerhouni EA, Judd RM et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation97, 765–772 (1998).
  • Hombach V, Grebe O, Merkle N et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur. Heart J.26, 549–557 (2005).
  • Taylor AJ, Al-Saadi N, Abdel-Aty H, Schulz-Menger J, Messroghli DR, Friedrich MG. Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation109, 2080–2085 (2004).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997).
  • Caplice NM, Doyle B. Vascular progenitor cells: origin and mechanisms of mobilization, differentiation, integration, and vasculogenesis. Stem Cells Dev.14, 122–139 (2005).
  • Kawamoto A, Gwon HC, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation103, 634–637 (2001).
  • Kamihata H, Matsubara H, Nishiue T et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation104, 1046–1052 (2001).
  • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7, 430–436 (2001).
  • Fuchs S, Baffour R, Zhou YF et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. Am. Coll. Cardiol.37, 1726–1732 (2001).
  • Kawamoto A, Tkebuchava T, Yamaguchi J et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107, 461–468 (2003).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114, 763–776 (2003).
  • Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Capasso JM. Hypertensive cardiomyopathy. Myocyte nuclei hyperplasia in the mammalian rat heart. J. Clin. Invest.85, 994–997 (1990).
  • Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl Acad. Sci. USA102, 8692–8697 (2005).
  • Beltrami CA, Finato N, Rocco M et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation89, 151–163 (1994).
  • Braz JC, Gregory K, Pathak A et al. PKC-α regulates cardiac contractility and propensity toward heart failure. Nat. Med.10, 248–254 (2004).
  • Chimenti C, Kajstura J, Torella D et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ. Res.93, 604–613 (2003).
  • Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ. Res.83, 1–14 (1998).
  • Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med.344, 1750–1757 (2001).
  • Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc. Natl Acad. Sci. USA95, 8801–8805 (1998).
  • Urbanek K, Quaini F, Tasca G et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Natl Acad. Sci. USA100, 10440–10445 (2003).
  • Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N. Engl. J. Med.346, 5–15 (2002).
  • Muller P, Pfeiffer P, Koglin J et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation106, 31–35 (2002).
  • Thiele J, Varus E, Wickenhauser C et al. Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts. Transplantation77, 1902–1905 (2004).
  • Thiele J, Varus E, Wickenhauser C, Kvasnicka HM, Metz KA, Beelen DW. Regeneration of heart muscle tissue: quantification of chimeric cardiomyocytes and endothelial cells following transplantation. Histol. Histopathol.19, 201–209 (2004).
  • Glaser R, Lu MM, Narula N, Epstein JA. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation106, 17–19 (2002).
  • Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation107, 1247–1249 (2003).
  • Taylor DA, Hruban R, Rodriguez ER, Goldschmidt-Clermont PJ. Cardiac chimerism as a mechanism for self-repair: does it happen and if so to what degree? Circulation106, 2–4 (2002).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22, 1282–1289 (2004).
  • Min JY, Yang Y, Converso KL et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol.92, 288–296 (2002).
  • Min JY, Yang Y, Sullivan MF et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg.125, 361–369 (2003).
  • Yuasa S, Itabashi Y, Koshimizu U et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol.23, 607–611 (2005).
  • Kehat I, Kenyagin-Karsenti D, Snir M et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108, 407–414 (2001).
  • Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation108, 2070–2073 (2003).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410, 701–705 (2001).
  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428, 668–673 (2004).
  • Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428, 664–668 (2004).
  • Chien KR. Stem cells: lost in translation. Nature428, 607–608 (2004).
  • Mangi AA, Noiseux N, Kong D et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9, 1195–1201 (2003).
  • Shake JG, Gruber PJ, Baumgartner WA et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg.73, 1919–1925 (2002).
  • Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res.95, 9–20 (2004).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95, 911–921 (2004).
  • Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100, 12313–12318 (2003).
  • Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med.342, 626–633 (2000).
  • Badorff C, Brandes RP, Popp R et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation107, 1024–1032 (2003).
  • Kajstura J, Rota M, Whang B et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res.96, 127–137 (2005).
  • Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106, 1913–1918 (2002).
  • Assmus B, Schachinger V, Teupe C et al. Transplantation Of Progenitor Cells And Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation106, 3009–3017 (2002).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol.44, 1690–1699 (2004).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004).
  • Britten MB, Abolmaali ND, Assmus B et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation108, 2212–2218 (2003).
  • Fernandez-Aviles F, San Roman JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ. Res.95, 742–748 (2004).
  • Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol.94, 92–95 (2004).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367, 113–121 (2006).
  • Penn MS. Stem-cell therapy after acute myocardial infarction: the focus should be on those at risk. Lancet367, 87–88 (2006).
  • Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ. Res.96, 151–163 (2005).
  • Kang HJ, Kim HS, Zhang SY et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet363, 751–756 (2004).
  • Ince H, Petzsch M, Kleine HD et al. Preservation from left ventricular remodeling by Front-Integrated Revascularization and STem cell Liberation IN Evolving Acute Myocardial Infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation112, 3097–3106 (2005).
  • Perin EC, Dohmann HF, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107, 2294–2302 (2003).
  • Hamano K, Nishida M, Hirata K et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ. J.65, 845–847 (2001).
  • Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet361, 47–49 (2003).
  • Fuchs S, Satler LF, Kornowski R et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol.41, 1721–1724 (2003).
  • Hill JM, Syed MA, Arai AE et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J. Am. Coll. Cardiol.46, 1643–1648 (2005).
  • Strauer BE, Brehm M, Zeus T et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J. Am. Coll. Cardiol.46, 1651–1658 (2005).
  • Assmus B, Honold J, Lehmann R et al. Transcoronary transplantation of progenitor cells and recovery of left ventricular function in patients with chronic ischemic heart disease: results of a randomized controlled trial. Circulation110, 238 (2004).
  • Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet361, 45–46 (2003).
  • Stamm C, Kleine HD, Westphal B et al. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac. Cardiovasc. Surg.52, 152–158 (2004).
  • Menasche P, Hagege AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41, 1078–1083 (2003).
  • Herreros J, Prosper F, Perez A et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur. Heart J.24, 2012–2020 (2003).
  • Siminiak T, Kalawski R, Fiszer D et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am. Heart J.148, 531–537 (2004).
  • Smits PC, van Geuns RJ, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol.42, 2063–2069 (2003).
  • Menasche P. Cellular transplantation: hurdles remaining before widespread clinical use. Curr. Opin Cardiol.19, 154–161 (2004).
  • Simper D, Wang S, Deb A et al. Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation108, 143–149 (2003).
  • Caplice NM, Gersh BJ, Alegria JR. Cell therapy for cardiovascular disease: what cells, what diseases and for whom? Nat. Clin. Pract. Cardiovasc. Med.2, 37–43 (2005).
  • Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94, 230–238 (2004).
  • Urbich C, Aicher A, Heeschen C et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell Cardiol.39, 733–742 (2005).
  • Li Q, Li B, Wang X et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest.100, 1991–1999 (1997).
  • Urbanek K, Rota M, Cascapera S et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ. Res.97, 663–673 (2005).
  • Gnecchi M, He H, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11, 367–368 (2005).
  • Conti E, Andreotti F, Sciahbasi A et al. Markedly reduced insulin-like growth factor-1 in the acute phase of myocardial infarction. J. Am. Coll. Cardiol.38, 26–32 (2001).
  • Lee WL, Chen JW, Ting CT, Lin SJ, Wang PH. Changes of the insulin-like growth factor I system during acute myocardial infarction: implications on left ventricular remodeling. J. Clin. Endocrinol. Metab.84, 1575–1581 (1999).
  • Gibbons RJ, Araoz PA. The year in cardiac imaging. J. Am. Coll. Cardiol.46, 542–551 (2005).
  • Meoli DF, Sadeghi MM, Krassilnikova S et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J. Clin. Invest.113, 1684–1691 (2004).
  • Lu E, Wagner WR, Schellenberger U et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation108, 97–103 (2003).
  • Hofmann M, Wollert KC, Meyer GP et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation111, 2198–2202 (2005).
  • Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed.17, 484–499 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.