75
Views
23
CrossRef citations to date
0
Altmetric
Review

ADAMTS13 and microvascular thrombosis

Pages 813-825 | Published online: 10 Jan 2014

References

  • Moschowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc. NY Pathol. Soc.24, 21–24 (1924).
  • Gasser C, Gautier E, Steck A, Siebenmann RE, and Oechslin R. Hamolytisch-uramische sydrome: bilaterale Nierenrindennekrosen bei akutenerworbenen hamolytischen anamien. Schweiz. Med. Wochenshr.85, 905–909 (1955).
  • Karmali MA, Steele BT, Petric M, Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet1, 619–620 (1983).
  • Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; Chronic thrombocytopenia due to its deficiency. Blood16, 943–957 (1960).
  • Upshaw JD Jr. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N. Engl J. Med.298, 1350–1352 (1978).
  • Goodship TH. Atypical HUS and complement dysregulation. J. Am. Soc. Nephrol.17, 1775–1776 (2006).
  • Tsai HM. The molecular biology of thrombotic microangiopathy. Kidney Int.70, 16–23 (2006).
  • Tsai HM. Current concepts in thrombotic thrombocytopenic purpura. Ann. Rev. Med.57, 419–436 (2006).
  • Levy GG, Nichols WC, Lian EC et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature413, 488–494 (2001).
  • Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J. Biol. Chem.276, 41059–41063 (2001).
  • Soejima K, Mimura N, Hirashima M et al. A novel human metalloprotease synthesized in the liver and secreted into the Blood: possibly, the von Willebrand factor-cleaving protease? J. Biochem. (Tokyo)130, 475–480 (2001).
  • Zhou W, Inada M, Lee TP et al. ADAMTS13 is expressed in hepatic stellate cells. Lab. Invest.85, 780–788 (2005).
  • Uemura M, Tatsumi K, Matsumoto M et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood106, 922–924 (2005).
  • Suzuki M, Murata M, Matsubara Y et al. Detection of von Willebrand factor-cleaving protease (ADAMTS-13) in human platelets. Biochem. Biophys. Res. Commun.313, 212–216 (2004).
  • Liu L, Choi H, Bernardo A et al. Platelet-derived vWF-cleaving metalloprotease ADAMTS-13. J. Thromb. Haemost.3, 2536–2544 (2005).
  • Turner N, Nolasco L, Tao Z, Dong JF, Moake J. Human endothelial cells synthesize and release ADAMTS-13. J. Thromb. Haemost.4, 1396–1404 (2006).
  • Zhou W, Dong L, Ginsburg D, Bouhassira EE, Tsai HM. Enzymatically active ADAMTS13 variants are not inhibited by anti-ADAMTS13 autoantibodies: a novel therapeutic strategy? J. Biol. Chem.280, 39934–39941 (2005).
  • Ai J, Smith P, Wang S, Zhang P, Zheng XL. The proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for cleavage of von Willebrand factor. J. Biol. Chem.280, 29428–29434 (2005).
  • Zheng X, Nishio K, Majerus EM, Sadler JE. Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J. Biol. Chem.278, 30136–30141 (2003).
  • Soejima K, Matsumoto M, Kokame K et al. ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood102, 3232–3237 (2003).
  • Luken BM, Turenhout EA, Hulstein JJ, van Mourik JA, Fijnheer R, Voorberg J. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb. Haemost.93, 267–274 (2005).
  • Klaus C, Plaimauer B, Studt JD et al. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood103, 4514–4519 (2004).
  • Chauhan AK, Motto DG, Lamb CB et al. Systemic antithrombotic effects of ADAMTS13. J. Exp. Med.203, 767–776 (2006).
  • Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood83, 2171–2179 (1994).
  • Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood87, 4235–4244 (1996).
  • Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood88, 2939–2950 (1996).
  • Tsai HM. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. J. Mol. Med.80, 639–647 (2002).
  • Donadelli R, Orje JN, Capoferri C, Remuzzi G, Ruggeri ZM. Size regulation of von Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood. Blood107, 1943–1950 (2006).
  • Tsai HM. Shear stress and von Willebrand factor in health and disease. Semin. Thromb. Hemost.29, 479–488 (2003).
  • Crawley JT, Lam JK, Rance JB, Mollica LR, O'Donnell JS, Lane DA. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood105, 1085–1093 (2005).
  • Dong JF, Moake JL, Nolasco L et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood100, 4033–4039 (2002).
  • Motto DG, Chauhan AK, Zhu G et al. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J. Clin. Invest.115, 2752–2761 (2005).
  • Bonnefoy A, Daenens K, Feys HB et al. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial vWF from cleavage by ADAMTS13. Blood107, 955–964 (2006).
  • Furlan M, Robles R, Solenthaler M, Lammle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood91, 2839–2846 (1998).
  • Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N. Engl. J. Med.339, 1585–1594 (1998).
  • Furlan M, Robles R, Galbusera M et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N. Engl. J. Med.339, 1578–1584 (1998).
  • Tsai HM, Raoufi M, Zhou W et al. ADAMTS13-binding IgG are present in patients with thrombotic thrombocytopenic purpura. Thromb. Haemost.95, 886–892 (2006).
  • Kokame K, Matsumoto M, Soejima K et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc. Natl Acad. Sci. USA99, 11902–11907 (2002).
  • Schneppenheim R, Budde U, Oyen F et al. Von Willebrand factor cleaving protease and ADAMTS13 mutations in childhood TTP. Blood101(5), 1845–1850 (2003).
  • Savasan S, Lee SK, Ginsburg D, Tsai HM. ADAMTS13 gene mutation in congenital thrombotic thrombocytopenic purpura with previously reported normal vWF cleaving protease activity. Blood101, 4449–4451 (2003).
  • Antoine G, Zimmermann K, Plaimauer B et al. ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant human ADAMTS13. Br. J. Haematol.120, 821–824 (2003).
  • Assink K, Schiphorst R, Allford S et al. Mutation analysis and clinical implications of von Willebrand factor-cleaving protease deficiency. Kidney Int.63, 1995–1999 (2003).
  • Bestetti G, Stellari A, Lattuada A et al. ADAMTS13 genotype and vWF protease activity in an Italian family with TTP. Thromb. Haemost.90, 955–956 (2003).
  • Veyradier A, Lavergne JM, Ribba AS et al. Ten candidate ADAMTS13 mutations in six French families with congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome). J. Thromb. Haemost.2, 424–429 (2004).
  • Pimanda JE, Maekawa A, Wind T, Paxton J, Chesterman CN, Hogg PJ. Congenital thrombotic thrombocytopenic purpura in association with a mutation in the second CUB domain of ADAMTS13. Blood103, 627–629 (2004).
  • Matsumoto M, Kokame K, Soejima K et al. Molecular characterization of ADAMTS13 gene mutations in Japanese patients with Upshaw–Schulman syndrome. Blood103, 1305–1310 (2004).
  • Uchida T, Wada H, Mizutani M et al. Identification of novel mutations in ADAMTS13 in an adult patient with congenital thrombotic thrombocytopenic purpura. Blood104, 2081–2083 (2004).
  • Snider CE, Moore JC, Warkentin TE, Finch CN, Hayward CP, Kelton JG. Dissociation between the level of von Willebrand factor-cleaving protease activity and disease in a patient with congenital thrombotic thrombocytopenic purpura. Am. J. Hematol.77, 387–390 (2004).
  • Plaimauer B, Fuhrmann J, Mohr G et al. Modulation of ADAMTS13 secretion and specific activity by a combination of common amino acid polymorphisms and a missense mutation. Blood107, 118–125 (2006).
  • Shibagaki Y, Matsumoto M, Kokame K et al. Novel compound heterozygote mutations (H234Q/R1206X) of the ADAMTS13 gene in an adult patient with Upshaw-Schulman syndrome showing predominant episodes of repeated acute renal failure. Nephrol. Dial. Transplant.21, 1289–1292 (2006).
  • Tsai HM, Chandler WL, Sarode R et al. von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157:H7-associated hemolytic uremic syndrome. Pediatr. Res.49, 653–659 (2001).
  • O’Brien JR, Tsai HM, Etherington MD. Defective von Willebrand factor activity detected by the filterometer in three clinical conditions. Platelets11, 388–394 (2000).
  • Veyradier A, Nishikubo T, Humbert M et al. Improvement of von Willebrand factor proteolysis after prostacyclin infusion in severe pulmonary arterial hypertension. Circulation102, 2460–2462 (2000).
  • Vincentelli A, Susen S, Le TT et al. Acquired von Willebrand syndrome in aortic stenosis. N. Engl. J. Med.349, 343–349 (2003).
  • Tsai HM, Sussman II, Ginsburg D, Lankhof H, Sixma JJ, Nagel RL. Proteolytic cleavage of recombinant type 2A von Willebrand factor mutants R834W and R834Q: inhibition by doxycycline and by monoclonal antibody VP-1. Blood89, 1954–1962 (1997).
  • O’Brien LA, Sutherland JJ, Hegadorn C et al. A novel type 2A (Group II) von Willebrand disease mutation (L1503Q) associated with loss of the highest molecular weight von Willebrand factor multimers. J. Thromb. Haemost.2, 1135–1142 (2004).
  • Hassenpflug WA, Budde U, Obser T et al. Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood107, 2339–2345 (2006).
  • Asada Y, Sumiyoshi A, Hayashi T, Suzumiya J, Kaketani K. Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic pupura, with special reference to factor VIII related antigen. Pediatr. Res.49, 653–659 (2001).
  • Torok TJ, Holman RC, Chorba TL. Increasing mortality from thrombotic thrombocytopenic purpura in the United States – analysis of national mortality data, 1968–1991. Am. J. Hematol.50, 84–90 (1995).
  • Miller DP, Kaye JA, Shea K et al. Incidence of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome. Epidemiology15, 208–215 (2004).
  • Hymes KB, Karpatkin S. Human immunodeficiency virus infection and thrombotic microangiopathy. Semin. Hematol.34, 117–125 (1997).
  • Bennett CL, Weinberg PD, Rozenberg-Ben-Dror K, Yarnold PR, Kwaan HC, Green D. Thrombotic thrombocytopenic purpura associated with ticlopidine. A review of 60 cases. Ann. Intern. Med.128, 541–544 (1998).
  • Tsai HM, Rice L, Sarode R, Chow TW, Moake JL. Antibody inhibitors to von Willebrand factor metalloproteinase and increased binding of von Willebrand factor to platelets in ticlopidine-associated thrombotic thrombocytopenic purpura. Ann. Intern. Med.132, 794–799 (2000).
  • Bennett CL, Connors JM, Carwile JM et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N. Engl. J. Med.342, 1773–1777 (2000).
  • Zakarija A, Bandarenko N, Pandey DK et al. Clopidogrel-associated TTP: an update of pharmacovigilance efforts conducted by independent researchers, pharmaceutical suppliers, and the Food and Drug Administration. Stroke35, 533–537 (2004).
  • Bukowski R. M. Thrombotic thrombocytopenic purpura. A review. Prog. Hemost. Thromb.6, 287–337 (1982).
  • Kennedy SS, Zacharski LR, Beck JR. Thrombotic thrombocytopenic purpura: analysis of 48 unselected cases. Semin. Thromb. Hemost.6, 341–349 (1980).
  • Coppo P, Bengoufa D, Veyradier A et al. Severe ADAMTS13 deficiency in adult idiopathic thrombotic microangiopathies defines a subset of patients characterized by various autoimmune manifestations, lower platelet count, and mild renal involvement. Medicine (Baltimore)83, 233–244 (2004).
  • Tsai HM, Shulman K. Rituximab induces remission of cerebral ischemia caused by thrombotic thrombocytopenic purpura. Eur. J. Haematol.70, 183–185 (2003).
  • Downes KA, Yomtovian R, Tsai HM, Silver B, Rutherford C, Sarode R. Relapsed thrombotic thrombocytopenic purpura presenting as an acute cerebrovascular accident. J. Clin. Apheresis.19, 86–89 (2004).
  • Schiff DE, Roberts WD, Willert J, Tsai HM. Thrombocytopenia and severe hyperbilirubinemia in the neonatal period secondary to congenital thrombotic thrombocytopenic purpura and ADAMTS13 deficiency. J. Pediatr. Hematol. Oncol.26, 535–538 (2004).
  • Noris M, Bucchioni S, Galbusera M et al. Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J. Am. Soc. Nephrol.16, 1177–1183 (2005).
  • Jubinsky PT, Moraille R, Tsai HM. Thrombotic thrombocytopenic purpura in a newborn. J. Perinatol.23, 85–87 (2003).
  • Tripodi A, Chantarangkul V, Bohm M et al. Measurement of von Willebrand factor cleaving protease (ADAMTS-13): results of an international collaborative study involving 11 methods testing the same set of coded plasmas. J. Thromb. Haemost.2, 1601–1609 (2004).
  • Rieger M, Ferrari S, Kremer Hovinga JA et al. Relation between ADAMTS13 activity and ADAMTS13 antigen levels in healthy donors and patients with thrombotic microangiopathies (TMA). Thromb. Haemost.95, 212–220 (2006).
  • Shelat SG, Smith P, Ai J, Zheng XL. Inhibitory autoantibodies against ADAMTS-13 in patients with thrombotic thrombocytopenic purpura bind ADAMTS-13 protease and may accelerate its clearance in vivo. J. Thromb. Haemost.4, 1707–1717 (2006).
  • Rieger M, Mannucci PM, Hovinga JA et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood106, 1262–1267 (2005).
  • Arai S, Allan C, Streiff M, Hutchins GM, Vogelsang GB, Tsai HM. Von Willebrand factor-cleaving protease activity and proteolysis of von Willebrand factor in bone marrow transplant-associated thrombotic microangiopathy. Hematol. J.2, 292–299 (2001).
  • Schneppenheim R, Kremer Hovinga JA, Becker T et al. A common origin of the 4143insA ADAMTS13 mutation. Thromb. Haemost.96, 3–6 (2006).
  • Yomtovian R, Niklinski W, Silver B, Sarode R, Tsai HM. Rituximab for chronic recurring thrombotic thrombocytopenic purpura: a case report and review of the literature. Br. J. Haematol.124, 787–795 (2004).
  • George JN, Woodson RD, Kiss JE, Kojouri K, Vesely SK. Rituximab therapy for thrombotic thrombocytopenic purpura: a proposed study of the Transfusion Medicine/Hemostasis Clinical Trials Network with a systematic review of rituximab therapy for immune-mediated disorders. J. Clin. Apher.21, 49–56 (2006).
  • Banno F, Kokame K, Okuda T et al. Complete deficiency in ADAMTS13 is prothrombotic, but it alone is not sufficient to cause thrombotic thrombocytopenic purpura. Blood107, 3161–3166 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.