127
Views
19
CrossRef citations to date
0
Altmetric
Review

β-adrenergic pathways in human heart failure

Pages 119-124 | Published online: 10 Jan 2014

References

  • Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens Res.22(1), 1–9 (1999).
  • Iwanaga Y, Kihara Y, Inagaki K et al. Differential effects of angiotensin II versus endothelin-1 inhibitions in hypertrophic left ventricular myocardium during transition to heart failure. Circulation104(5), 606–612 (2001).
  • Kono T, Sabbah HN, Rosman H, Alam M, Jafri S, Goldstein S. Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J. Am. Coll. Cardiol.20(7), 1594–1598 (1992).
  • Bonow RO. Aortic Regurgitation. Curr. Treat. Options Cardiovasc. Med.2(2), 125–132 (2000).
  • Bristow MR. Mechanism of action of β-blocking agents in heart failure. Am. J. Cardiol.80(11A), 26L–40L (1997).
  • Esler M, Kaye D, Lambert G, Esler D, Jennings G. Adrenergic nervous system in heart failure. Am. J. Cardiol.80(11A), 7L–14L (1997).
  • Lowes BD, Gilbert EM, Abraham WT et al. Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N. Engl. J. Med.346(18), 1357–1365 (2002).
  • Feldman DS, Carnes CA, Abraham WT, Bristow MR. Mechanisms of disease: β-adrenergic receptors – alterations in signal transduction and pharmacogenomics in heart failure. Nat. Clin. Pract. Cardiovasc. Med.2(9), 475–483 (2005).
  • Mongillo M, Tocchetti CG, Terrin A et al. Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ. Res.98(2), 226–234 (2006).
  • Morisco C, Zebrowski DC, Vatner DE, Vatner SF, Sadoshima J. β-adrenergic cardiac hypertrophy is mediated primarily by the β(1)-subtype in the rat heart. J. Mol. Cell. Cardiol.33(3), 561–573 (2001).
  • Wallukat G. The β-adrenergic receptors. Herz27(7), 683–690 (2002).
  • Rapacciuolo A, Suvarna S, Barki-Harrington L et al. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates β-1 adrenergic receptor endocytosis through different pathways. J. Biol. Chem.278(37), 35403–35411 (2003).
  • Port JD BM. Adrenergic Receptor Coupling and uncoupling in heart failure. In: Richard A. Walsh (Ed.). Molecular Mechanisms for Cardiac Hypertrophy and Failure, 323–340.
  • El-Armouche A, Pamminger T, Ditz D, Zolk O, Eschenhagen T. Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc. Res.61(1), 87–93 (2004).
  • Movsesian MA, Bristow MR. Alterations in cAMP-mediated signaling and their role in the pathophysiology of dilated cardiomyopathy. Curr. Top. Dev. Biol.68, 25–48 (2005).
  • Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of β-adrenergic signaling in heart failure? Circ. Res.93(10), 896–906 (2003).
  • Movsesian MA. β-adrenergic receptor agonists and cyclic nucleotide phosphodiesterase inhibitors: shifting the focus from inotropy to cyclic adenosine monophosphate. J. Am. Coll. Cardiol.34(2), 318–324 (1999).
  • Cleland JG, Coletta AP, Lammiman M et al. Clinical trials update from the European Society of Cardiology meeting 2005: CARE-HF extension study, ESSENTIAL, CIBIS-III, S-ICD, ISSUE-2, STRIDE-2, SOFA, IMAGINE, PREAMI, SIRIUS-II and ACTIVE. Eur. J. Heart Fail.7(6), 1070–1075 (2005).
  • Shakur Y, Holst LS, Landstrom TR, Movsesian M, Degerman E, Manganiello V. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog. Nucleic Acid Res. Mol. Biol.66, 241–277 (2001).
  • Ding B, Abe J, Wei H et al. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation111(19), 2469–2476 (2005).
  • Ding B, Abe J, Wei H et al. A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proc. Natl Acad. Sci. USA102(41), 14771–14776 (2005).
  • Fitzgerald LR, Li Z, Machida CA, Fishman PH, Duman RS. Adrenergic regulation of ICER (inducible cyclic AMP early repressor) and β1-adrenergic receptor gene expression in C6 glioma cells. J. Neurochem.67(2), 490–497 (1996).
  • Simmerman HK, Jones LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol. Rev.78(4), 921–947 (1998).
  • Wang W, Zhu W, Wang S et al. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ. Res.95(8), 798–806 (2004).
  • Kirchhefer U, Schmitz W, Scholz H, Neumann J. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc. Res.42(1), 254–261 (1999).
  • Mishra S, Gupta RC, Tiwari N, Sharov VG, Sabbah HN. Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J. Heart Lung Transplant21(3), 366–373 (2002).
  • Neumann J, Eschenhagen T, Jones LR et al. Increased expression of cardiac phosphatases in patients with end-stage heart failure. J. Mol. Cell. Cardiol.29(1), 265–272 (1997).
  • Gupta RC, Mishra S, Rastogi S, Imai M, Habib O, Sabbah HN. Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts. Am. J. Physiol. Heart Circ. Physiol.285(6), H2373–H2381 (2003).
  • Kirchhefer U, Baba HA, Boknik P et al. Enhanced cardiac function in mice overexpressing protein phosphatase Inhibitor-2. Cardiovasc. Res.68(1), 98–108 (2005).
  • Yamada M, Ikeda Y, Yano M et al. Inhibition of protein phosphatase 1 by inhibitor-2 gene delivery ameliorates heart failure progression in genetic cardiomyopathy. Faseb J.20(8), 1197–1199 (2006).
  • Wang W, Wang S, Zhu W, Xiao R, Cheng H. Long-term β1-adrenergic modulation of cardiac contractility via calmodulin kinase II signaling pathway. Supplement to Circulation108(17), 1 (2003).
  • Zhu WZ, Wang SQ, Chakir K et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J. Clin. Invest.111(5), 617–625 (2003).
  • Zhang R, Khoo MS, Wu Y et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat. Med.11(4), 409–417 (2005).
  • Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol.57, 417–445 (1995).
  • Griffith LC. Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular interactions. J. Neurosci.24(39), 8394–8398 (2004).
  • Zhang T, Maier LS, Dalton ND et al. The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res.92(8), 912–9 (2003).
  • Zhang T, Johnson EN, Gu Y et al. The cardiac-specific nuclear δ(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J. Biol. Chem.277(2), 1261–7 (2002).
  • Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P. Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ. Res.84(6), 713–721 (1999).
  • Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J. Biol. Chem.266(17), 11144–11152 (1991).
  • Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J. Biol. Chem.270(5), 2074–2081 (1995).
  • Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat. Cell Biol.2(3), 173–177 (2000).
  • Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J. Biol. Chem.261(28), 13333–13341 (1986).
  • Le Peuch CJ, Haiech J, Demaille JG. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry18 (23), 5150–5157 (1979).
  • Maier LS, Bers DM. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J. Mol. Cell. Cardiol.34(8), 919–939 (2002).
  • Zhang T, Miyamoto S, Brown JH. Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes? Recent Prog. Horm. Res.59, 141–168 (2004).
  • Xu A, Hawkins C, Narayanan N. Phosphorylation and activation of the Ca(2+)-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. J. Biol. Chem.268(12), 8394–8397 (1993).
  • Odermatt A, Kurzydlowski K, MacLennan DH. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J. Biol. Chem.271(24), 14206–14213 (1996).
  • Schworer CM, Rothblum LI, Thekkumkara TJ, Singer HA. Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J. Biol. Chem.268(19), 14443–9 (1993).
  • Lompre AM, Schwartz K, d'Albis A, Lacombe G, Van Thiem N, Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature282(5734), 105–107 (1979).
  • Boluyt MO, Long X, Eschenhagen T et al. Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart. Am. J. Physiol.269(2 Pt 2), H638–H647 (1995).
  • Rothermel BA, McKinsey TA, Vega RB et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA98(6), 3328–3333 (2001).
  • Eichhorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation94(9), 2285–2296 (1996).
  • Sucharov CC, Mariner PD, Nunley KR, Long CS, Leinwand LA, Bristow MR. A {beta}1-adrenergic receptor, CaM Kinase II dependent pathway mediates cardiac myocyte fetal gene induction. Am. J. Physiol. Heart Circ. Physiol.291(3), H1299–H308 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.