261
Views
33
CrossRef citations to date
0
Altmetric
Review

Isolation and expansion of resident cardiac progenitor cells

, , &
Pages 33-43 | Published online: 10 Jan 2014

References

  • American Heart Association, Heart Disease and Stroke Statistics – 2004 Update., TX, USA, American Heart Association, 2003
  • Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7, 223–253 (2005).
  • Smits AM, van Vliet P, Hassink RJ, Goumans MJ, Doevendans PA. The role of stem cells in cardiac regeneration. J. Cell. Mol. Med. 9(1), 25–36 (2005).
  • Zwaginga JJ, Doevendans P. Stem cell-derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering. Clin. Exp. Pharmacol. Physiol.30(11), 900–908 (2003).
  • Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes. Circ. Res.98(8), 1002–1013 (2006).
  • Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103(5), 697–705 (1999).
  • Hakuno D, Fukuda K, Makino S et al. Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation105(3), 380–386 (2002).
  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation105(1), 93–98 (2002).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature 410(6829), 701–705 (2001).
  • Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983), 664–668 (2004).
  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983), 668–673 (2004).
  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425(6961), 968–973 (2003).
  • Nygren JM, Jovinge S, Breitbach M et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5), 494–501 (2004).
  • Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest.115(3), 572–583 (2005).
  • Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10-year point. Circulation112(20), 3174–3183 (2005).
  • Menasche P. Skeletal myoblast transplantation for cardiac repair. Expert. Rev. Cardiovasc. Ther. 2(1), 21–28 (2004).
  • Passier R, Mummery C. Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovasc. Res. 58(2), 324–335 (2003).
  • Moore JC, van Laake LW, Braam SR et al. Human embryonic stem cells: genetic manipulation on the way to cardiac cell therapies. Reprod. Toxicol.20(3), 377–391 (2005).
  • Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res.83(1), 15–26 (1998).
  • Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med.344(23), 1750–1757 (2001).
  • Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 415(6868), 240–243 (2002).
  • Harvey RP. Patterning the vertebrate heart. Nat. Rev. Genet.3(7), 544–556 (2002).
  • Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev.17(16), 1937–1956 (2003).
  • Zaffran S, Frasch M. Early signals in cardiac development. Circ. Res.91(6), 457–469 (2002).
  • Franco D, Lamers WH, Moorman AF. Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc. Res. 38(1), 25–53 (1998).
  • Masino AM, Gallardo TD, Wilcox CA, Olson EN, Williams RS, Garry DJ. Transcriptional regulation of cardiac progenitor cell populations. Circ. Res.95(4), 389–397 (2004).
  • Cai CL, Liang X, Shi Y et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell.5(6), 877–889 (2003).
  • Yang L, Cai CL, Lin L et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133(8), 1575–1585 (2006).
  • Laugwitz KL, Moretti A, Lam J et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026), 647–653 (2005).
  • Greider CW. Telomerase activity, cell proliferation, and cancer. Proc. Natl Acad. Sci. USA.95(1), 90–92 (1998).
  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183(4), 1797–1806 (1996).
  • Zhou S, Schuetz JD, Bunting KD et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med.7(9), 1028–1034 (2001).
  • Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett.530(1–3), 239–243 (2002).
  • Martin CM, Meeson AP, Robertson SM et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol.265(1), 262–275 (2004).
  • Pfister O, Mouquet F, Jain M et al. CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res.97(1), 52–61 (2005).
  • van de Rijn M., Heimfeld S, Spangrude GJ, Weissman IL. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. Proc. Natl Acad. Sci. USA.86(12), 4634–4638 (1989).
  • Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol. Life Sci.61(19–20), 2535–2548 (2004).
  • Matsuura K, Nagai T, Nishigaki N et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem.279(12), 11384–11391 (2004).
  • Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100(21), 12313–12318 (2003).
  • Wang X, Hu Q, Nakamura Y et al. The Role of Sca-1+/CD31- Cardiac Progenitor Cell Population in Postinfarction LV Remodeling. Stem Cells24(7), 1779–1788 (2006).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6), 763–776 (2003).
  • Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA.102(25), 8966–8971 (2005).
  • Urbanek K, Rota M, Cascapera S et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ. Res.97(7), 663–673 (2005).
  • Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc. Natl Acad. Sci. USA.95(15), 8801–8805 (1998).
  • Urbanek K, Quaini F, Tasca G et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Natl Acad. Sci. USA100(18), 10440–10445 (2003).
  • Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl Acad. Sci. USA.102(24), 8692–8697 (2005).
  • Messina E, De Angelis L, Frati G et al. Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart. Circ. Res.95(9), 911–921 (2004).
  • Goumans MJ, de Boer TP, Smits A et al. Human cardiac progenitor cells are able to differentiate into cardiomyocytes in vitro. Circulation112(17), U106 (2005).
  • Heng BC, Haider HK, Sim EK, Cao T, Ng SC. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc. Res. 62(1), 34–42 (2004).
  • Mummery C, Ward-van Oostwaard D, Doevendans P et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107(21), 2733–2740 (2003).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22(10), 1282–1289 (2004).
  • Fukuhara S, Tomita S, Yamashiro S et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro.J. Thorac. Cardiovasc. Surg.125(6), 1470–1480 (2003).
  • Rubart M, Pasumarthi KB, Nakajima H, Soonpaa MH, Nakajima HO, Field LJ. Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ. Res.92(11), 1217–1224 (2003).
  • Azhar M, Schultz JJ, Grupp I et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev.14(5), 391–407 (2003).
  • Yoon YS, Wecker A, Heyd L et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest.115(2), 326–338 (2005).
  • Fazel S, Cimini M, Chen L et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest.116(7), 1865–1877 (2006).
  • Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res.98(11), 1414–1421 (2006).
  • Mangi AA, Noiseux N, Kong D et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9(9), 1195–1201 (2003).
  • Gnecchi M, He H, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11(4), 367–368 (2005).
  • Gnecchi M, He H, Noiseux N et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20(6), 661–669 (2006).
  • O'Neill BT, Abel ED. Akt1 in the cardiovascular system: friend or foe? J. Clin. Invest.115(8), 2059–2064 (2005).
  • Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J. Clin. Invest.115(7), 1724–1733 (2005).
  • Simons M, Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov. 2(11), 863–871 (2003).
  • Nordlie MA, Wold LE, Simkhovich BZ, Sesti C, Kloner RA. Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. J. Cardiovasc. Pharmacol. Ther.11(1), 17–30 (2006).
  • Behfar A, Zingman LV, Hodgson DM et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J.16(12), 1558–1566 (2002).
  • Beqqali A, Kloots J, Ward-van Oostwaard D, Mummery C, Passier R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells24(8), 1956–1967 (2006).
  • Yoon YS, Johnson IA, Park JS, Diaz L, Losordo DW. Therapeutic myocardial angiogenesis with vascular endothelial growth factors. Mol. Cell Biochem. 264(1–2), 63–74 (2004).
  • Lemos PA, Serruys PW, Sousa JE. Drug-eluting stents: cost versus clinical benefit. Circulation.107(24), 3003–3007 (2003).
  • Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm. Res. 17(5), 497–504 (2000).
  • Zimmermann WH, Melnychenko I, Wasmeier G et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med.12(4), 452–458 (2006).
  • Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation100(2), 193–202 (1999).
  • Isner JM. Myocardial gene therapy. Nature 415(6868), 234–239 (2002).
  • Chang MG, Tung L, Sekar RB et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation113(15), 1832–1841 (2006).
  • Krause DS. Plasticity of marrow-derived stem cells. Gene Ther.9(11), 754–758 (2002).
  • Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N. Engl. J. Med.346(1), 5–15 (2002).
  • Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res.90(6), 634–640 (2002).
  • Laflamme MA, Murry CE. Regenerating the heart. Nat. Biotechnol.23(7), 845–856 (2005).
  • Metzger D, Feil R. Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10(5), 470–476 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.