98
Views
14
CrossRef citations to date
0
Altmetric
Review

Adult stem cells and heart regeneration

, &
Pages 507-517 | Published online: 10 Jan 2014

References

  • Thom T, Haase N, Rosamond W et al. Heart disease and stroke statistics – 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation113(6), E85–E151 (2006).
  • Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell100(1), 157–168 (2000).
  • Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev.85(4), 1373–1416 (2005).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6), 763–776 (2003).
  • Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl Acad. Sci. USA102(24), 8692–8697 (2005).
  • Torella D, Ellison GM, Mendez-Ferrer S, Ibanez B, Nadal-Ginard B. Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S8–S13 (2006).
  • Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100(21), 12313–12318 (2003).
  • Bradfute SB, Graubert TA, Goodell MA. Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp. Hematol.33(7), 836–843 (2005).
  • Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett.530(1–3), 239–243 (2002).
  • Asakura A, Rudnicki MA. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol.30(11), 1339–1345 (2002).
  • Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells24(1), 3–12 (2006).
  • Martin CM, Meeson AP, Robertson SM et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol.265(1), 262–275 (2004).
  • Mouquet F, Pfister O, Jain M et al. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ. Res.97(11), 1090–1092 (2005).
  • Pfister O, Mouquet F, Jain M et al. CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res.97(1), 52–61 (2005).
  • Tomita Y, Matsumura K, Wakamatsu Y et al. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J. Cell Biol.170(7), 1135–1146 (2005).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95(9), 911–921 (2004).
  • Laugwitz KL, Moretti A, Lam J et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature433(7026), 647–653 (2005).
  • Moretti A, Caron L, Nakano A et al. Multipotent embryonic Isl1(+) progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell127(6), 1151–1165 (2006).
  • Mauro A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol.9, 493–495 (1961).
  • Siminiak T, Kalmucki P, Kurpisz M. Autologous skeletal myoblasts for myocardial regeneration. J. Interv. Cardiol.17(6), 357–365 (2004).
  • Chachques JC, Acar C, Herreros J et al. Cellular cardiomyoplasty: clinical application. Ann. Thorac. Surg.77(3), 1121–1130 (2004).
  • Reinecke H, Murry CE. Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. J. Mol. Cell Cardiol.34(3), 251–253 (2002).
  • Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J. Clin. Invest.114(6), 775–783 (2004).
  • Jain M, DerSimonian H, Brenner DA et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation103(14), 1920–1927 (2001).
  • Menasche P. Skeletal myoblast transplantation for cardiac repair. Expert Rev. Cardiovasc. Ther.2(1), 21–28 (2004).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Jackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107(11), 1395–1402 (2001).
  • Nygren JM, Jovinge S, Breitbach M et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5), 494–501 (2004).
  • Lapidos KA, Chen YE, Earley JU et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J. Clin. Invest.114(11), 1577–1585 (2004).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–967 (1997).
  • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7(4), 430–436 (2001).
  • Iwasaki H, Kawamoto A, Ishikawa M et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation113(10), 1311–1325 (2006).
  • Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103(5), 697–705 (1999).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science276(5309), 71–74 (1997).
  • Le Blanc K, Ringden O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr. Opin. Immunol.18(5), 586–591 (2006).
  • Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2), 211–228 (2001).
  • Planat-Benard V, Menard C, Andre M et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res.94(2), 223–229 (2004).
  • Rehman J, Considine RV, Bovenkerk JE et al. Obesity is associated with increased levels of circulating hepatocyte growth factor. J. Am. Coll. Cardiol.41(8), 1408–1413 (2003).
  • Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation109(10), 1292–1298 (2004).
  • Guan K, Nayernia K, Maier LS et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature440(7088), 1199–1203 (2006).
  • Kawamoto A, Tkebuchava T, Yamaguchi J et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107(3), 461–468 (2003).
  • Mangi AA, Noiseux N, Kong D et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9(9), 1195–1201 (2003).
  • Orlic D, Kajstura J, Chimenti S et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl Acad. Sci. USA98(18), 10344–10349 (2001).
  • Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol.34(2), 241–249 (2002).
  • Gnecchi M, He H, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11(4), 367–368 (2005).
  • Takahashi T, Kalka C, Masuda H et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med.5(4), 434–438 (1999).
  • Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res.98(11), 1414–1421 (2006).
  • Misao Y, Takemura G, Arai M et al. Bone marrow-derived myocyte-like cells and regulation of repair-related cytokines after bone marrow cell transplantation. Cardiovasc. Res.69(2), 476–490 (2006).
  • Tang YL, Zhao Q, Qin X et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann. Thorac. Surg.80(1), 229–236 (2005).
  • Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ. Res.95(4), 354–363 (2004).
  • Kinnaird T, Stabile E, Burnett MS et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res.94(5), 678–685 (2004).
  • Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109(12), 1543–1549 (2004).
  • Fazel S, Cimini M, Chen L et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest.116(7), 1865–1877 (2006).
  • Rangappa S, Entwistle JW, Wechsler AS, Kresh JY. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J. Thorac. Cardiovasc. Surg.126(1), 124–132 (2003).
  • Sherman W, Martens TP, Viles-Gonzalez JF, Siminiak T. Catheter-based delivery of cells to the heart. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S57–S64 (2006).
  • Perin EC, Lopez J. Methods of stem cell delivery in cardiac diseases. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S110–S113 (2006).
  • Aicher A, Brenner W, Zuhayra M et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation107(16), 2134–2139 (2003).
  • Kraitchman DL, Tatsumi M, Gilson WD et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation112(10), 1451–1461 (2005).
  • Kurpisz M, Czepczynski R, Grygielska B et al. Bone marrow stem cell imaging after intracoronary administration. Int. J. Cardiol. DOI:10.1016/j.ijcard. 2006.08.062 (2006) (Epub ahead of print).
  • Siminiak T, Fiszer D, Jerzykowska O et al. Percutaneous trans-coronary–venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur. Heart J.26(12), 1188–1195 (2005).
  • Menasche P, Hagege AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41(7), 1078–1083 (2003).
  • Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet363(9411), 783–784 (2004).
  • Han CI, Campbell GR, Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. J. Vasc. Res.38(2), 113–119 (2001).
  • Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106(15), 1913–1918 (2002).
  • Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation106(24), 3009–3017 (2002).
  • Britten MB, Abolmaali ND, Assmus B et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI), mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation108(18), 2212–2218 (2003).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol.44(8), 1690–1699 (2004).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355(12), 1222–1232 (2006).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364(9429), 141–148 (2004).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367(9505), 113–121 (2006).
  • Schachinger V, Tonn T, Dimmeler S, Zeiher AM. Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S23–S28 (2006).
  • Schachinger V, Erbs S, Elsassar A. et al. Intracoronary infusion of bone-marrow-derived progenitor cells is associated with improved clinical outcome in patients with acute myocardial infarction: 12 months follow up of the REPAR-AMI trial. Circulation114, II-787 (2006).
  • Assmus B, Urbich C, Aicher A et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res.92(9), 1049–1055 (2003).
  • Rupp S, Badorff C, Koyanagi M et al. Statin therapy in patients with coronary artery disease improves the impaired endothelial progenitor cell differentiation into cardiomyogenic cells. Basic Res. Cardiol.99(1), 61–68 (2004).
  • Valgimigli M, Rigolin GM, Fucili A et al. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation110(10), 1209–1212 (2004).
  • Suzuki K, Brand NJ, Allen S et al. Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J. Thorac. Cardiovasc. Surg.122(4), 759–766 (2001).
  • Urbanek K, Quaini F, Tasca G et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Natl Acad. Sci. USA100(18), 10440–10445 (2003).
  • Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA102(25), 8966–8971 (2005).
  • Matsuura K, Nagai T, Nishigaki N et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem.279(12), 11384–11391 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.