144
Views
13
CrossRef citations to date
0
Altmetric
Review

Reversing chronic remodeling in heart failure

&
Pages 585-598 | Published online: 10 Jan 2014

References

  • Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol.35(3), 569–582 (2000).
  • Hauptman PJ, Sabbah HN. Reversal of ventricular remodeling: important to establish and difficult to define. Eur. J. Heart Fail.9(4), 325–328 (2007).
  • Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet367(9507), 356–367 (2006).
  • Kass DA, Baughman KL, Pak PH et al. Reverse remodeling from cardiomyoplasty in human heart failure. External constraint versus active assist. Circulation91(9), 2314–2318 (1995).
  • Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N. Engl. J. Med.319(2), 80–86 (1988).
  • Lamas GA, Pfeffer MA. Left ventricular remodeling after acute myocardial infarction: clinical course and beneficial effects of angiotensin-converting enzyme inhibition. Am. Heart J.121(4 Pt 1), 1194–1202 (1991).
  • Pfeffer JM. Progressive ventricular dilation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am. J. Cardiol.68(14), 17D–25D (1991).
  • Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β 1 and endothelin-1 from fibroblasts. Cardiovasc. Res.40(2), 352–363 (1998).
  • Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Res.28(9), 1423–1432 (1994).
  • Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J. Biol. Chem.272(30), 19022–19026 (1997).
  • Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ. Res.57(1), 84–95 (1985).
  • Sharpe N, Smith H, Murphy J, Greaves S, Hart H, Gamble G. Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin-converting-enzyme inhibition. Lancet337(8746), 872–876 (1991).
  • Konstam MA, Rousseau MF, Kronenberg MW et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation86(2), 431–438 (1992).
  • Wong M, Staszewsky L, Latini R et al. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiographic study. J. Am. Coll. Cardiol.40(5), 970–975 (2002).
  • Wittstein IS, Kass DA, Pak PH, Maughan WL, Fetics B, Hare JM. Cardiac nitric oxide production due to angiotensin-converting enzyme inhibition decreases β-adrenergic myocardial contractility in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol.38(2), 429–435 (2001).
  • Brilla CG, Rupp H, Maisch B. Effects of ACE inhibition versus non-ACE inhibitor antihypertensive treatment on myocardial fibrosis in patients with arterial hypertension. Retrospective analysis of 120 patients with left ventricular endomyocardial biopsies. Herz28(8), 744–753 (2003).
  • Lonn E, Shaikholeslami R, Yi Q et al. Effects of ramipril on left ventricular mass and function in cardiovascular patients with controlled blood pressure and with preserved left ventricular ejection fraction: a substudy of the Heart Outcomes Prevention Evaluation (HOPE) trial. J. Am. Coll. Cardiol.43(12), 2200–2206 (2004).
  • Devereux RB, Dahlof B, Gerdts E et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention For Endpoint reduction in hypertension (LIFE) trial. Circulation110(11), 1456–1462 (2004).
  • Ciulla MM, Paliotti R, Esposito A et al. Different effects of antihypertensive therapies based on losartan or atenolol on ultrasound and biochemical markers of myocardial fibrosis: results of a randomized trial. Circulation110(5), 552–557 (2004).
  • Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J. Mol. Cell Cardiol.26(7), 809–820 (1994).
  • Yoshida M, Ma J, Tomita T et al. Mineralocorticoid receptor is overexpressed in cardiomyocytes of patients with congestive heart failure. Congest. Heart Fail.11(1), 12–16 (2005).
  • Delyani JA, Robinson EL, Rudolph AE. Effect of a selective aldosterone receptor antagonist in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.281(2), H647–H654 (2001).
  • Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G, Bauersachs J. Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J. Am. Coll. Cardiol.42(9), 1666–1673 (2003).
  • Veliotes DG, Woodiwiss AJ, Deftereos DA, Gray D, Osadchii O, Norton GR. Aldosterone receptor blockade prevents the transition to cardiac pump dysfunction induced by β-adrenoreceptor activation. Hypertension45(5), 914–920 (2005).
  • Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med.341(10), 709–717 (1999).
  • Pitt B, Reichek N, Willenbrock R et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation108(15), 1831–1838 (2003).
  • Pitt B, Remme W, Zannad F et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med.348(14), 1309–1321 (2003).
  • Izawa H, Murohara T, Nagata K et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation112(19), 2940–2945 (2005).
  • Greenberg B, Zannad F, Pitt B. Role of aldosterone blockade for treatment of heart failure and post-acute myocardial infarction. Am. J. Cardiol.97(10A), 34F–40F (2006).
  • Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation85(2), 790–804 (1992).
  • Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA96(12), 7059–7064 (1999).
  • Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HB, Hildebrandt PR. Antiremodeling effects on the left ventricle during β-blockade with metoprolol in the treatment of chronic heart failure. J. Am. Coll. Cardiol.36(7), 2072–2080 (2000).
  • Doughty RN, Whalley GA, Walsh HA, Gamble GD, Lopez-Sendon J, Sharpe N. Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: the CAPRICORN echo substudy. Circulation109(2), 201–206 (2004).
  • Lowes BD, Gilbert EM, Abraham WT et al. Myocardial gene expression in dilated cardiomyopathy treated with b-blocking agents. N. Engl. J. Med.346(18), 1357–1365 (2002).
  • Reiken S, Wehrens XH, Vest JA et al. b-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation107(19), 2459–2466 (2003).
  • Bohm M, Deutsch HJ, Hartmann D, Rosee KL, Stablein A. Improvement of postreceptor events by metoprolol treatment in patients with chronic heart failure. J. Am. Coll. Cardiol.30(4), 992–996 (1997).
  • Beanlands RS, Nahmias C, Gordon E et al. The effects of β(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation102(17), 2070–2075 (2000).
  • Zimmet JM, Hare JM. Nitroso-redox interactions in the cardiovascular system. Circulation114(14), 1531–1544 (2006).
  • Munzel T, Kurz S, Rajagopalan S et al. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J. Clin. Invest.98(6), 1465–1470 (1996).
  • Cohn JN, Archibald DG, Ziesche S et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N. Engl. J. Med.314(24), 1547–1552 (1986).
  • Cohn JN, Johnson G, Ziesche S et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med.325(5), 303–310 (1991).
  • Taylor AL, Ziesche S, Yancy C et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med.351(20), 2049–2057 (2004).
  • Iuliano S, Fisher SG, Karasik PE, Fletcher RD, Singh SN. QRS duration and mortality in patients with congestive heart failure. Am. Heart J.143(6), 1085–1091 (2002).
  • Baldasseroni S, Opasich C, Gorini M et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am. Heart J.143(3), 398–405 (2002).
  • Prinzen FW, Hunter WC, Wyman BT, McVeigh ER. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J. Am. Coll. Cardiol.33(6), 1735–1742 (1999).
  • Spragg DD, Kass DA. Pathobiology of left ventricular dyssynchrony and resynchronization. Prog. Cardiovasc. Dis.49(1), 26–41 (2006).
  • van Oosterhout MF, Arts T, Muijtjens AM, Reneman RS, Prinzen FW. Remodeling by ventricular pacing in hypertrophying dog hearts. Cardiovasc. Res.49(4), 771–778 (2001).
  • van Oosterhout MF, Arts T, Bassingthwaighte JB, Reneman RS, Prinzen FW. Relation between local myocardial growth and blood flow during chronic ventricular pacing. Cardiovasc. Res.53(4), 831–840 (2002).
  • van Oosterhout MF, Prinzen FW, Arts T et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation98(6), 588–595 (1998).
  • Leclercq C, Faris O, Tunin R et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation106(14), 1760–1763 (2002).
  • Nelson GS, Berger RD, Fetics BJ et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation102(25), 3053–3059 (2000).
  • Yu CM, Chau E, Sanderson JE et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation105(4), 438–445 (2002).
  • Abraham WT, Fisher WG, Smith AL et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med.346(24), 1845–1853 (2002).
  • Sutton MG, Plappert T, Abraham WT et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation107(15), 1985–1990 (2003).
  • Bristow MR, Saxon LA, Boehmer J et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med.350(21), 2140–2150 (2004).
  • Cleland JG, Daubert JC, Erdmann E et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med.352(15), 1539–1549 (2005).
  • Cleland JG, Daubert JC, Erdmann E et al. Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. Eur. Heart J.27(16), 1928–1932 (2006).
  • Sutton MG, Plappert T, Hilpisch KE, Abraham WT, Hayes DL, Chinchoy E. Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter Insync RAndomized CLinical Evaluation (MIRACLE). Circulation113(2), 266–272 (2006).
  • Gasparini M, Lunati M, Santini M et al. Long-Term Survival in Patients Treated with Cardiac Resynchronization Therapy: a 3-Year Follow-Up Study from the InSync/InSync ICD Italian Registry. Pacing Clin. Electrophysiol.29(Suppl. 2) S2–S10 (2006).
  • Bleeker GB, Bax JJ, Fung JW et al. Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy. Am. J. Cardiol.97(2), 260–263 (2006).
  • Bax JJ, Abraham T, Barold SS et al. Cardiac resynchronization therapy: part 1 – issues before device implantation. J. Am. Coll. Cardiol.46(12), 2153–2167 (2005).
  • Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J. Am. Coll. Cardiol.46(12), 2223–2228 (2005).
  • D’Ascia C, Cittadini A, Monti MG, Riccio G, Sacca L. Effects of biventricular pacing on interstitial remodelling, tumor necrosis factor-α expression, and apoptotic death in failing human myocardium. Eur. Heart J.27(2), 201–206 (2006).
  • Batista R, Santos J, Takeshita N, Bocchino L, Lima PN, Cupha MA. Partial left ventriculectomy to improve left ventricular function in end-stage heart disease. J. Card. Surg.11, 96–97 (1996).
  • Athanasuleas CL, Buckberg GD, Stanley AW et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J. Am. Coll. Cardiol.44(7), 1439–1445 (2004).
  • Ribeiro GA, da Costa CE, Lopes MM et al. Left ventricular reconstruction benefits patients with ischemic cardiomyopathy and non-viable myocardium. Eur. J. Cardiothorac. Surg.29(2), 196–201 (2006).
  • Trichon BH, Felker GM, Shaw LK, Cabell CH, O’Connor CM. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am. J. Cardiol.91(5), 538–543 (2003).
  • Bach DS, Bolling SF. Improvement following correction of secondary mitral regurgitation in end-stage cardiomyopathy with mitral annuloplasty. Am. J. Cardiol.78(8), 966–969 (1996).
  • Wu AH, Aaronson KD, Bolling SF, Pagani FD, Welch K, Koelling TM. Impact of mitral valve annuloplasty on mortality risk in patients with mitral regurgitation and left ventricular systolic dysfunction. J. Am. Coll. Cardiol.45(3), 381–387 (2005).
  • Patel HJ, Lankford EB, Polidori DJ et al. Dynamic cardiomyoplasty: its chronic and acute effects on the failing heart. J. Thorac. Cardiovasc. Surg.114(2), 169–178 (1997).
  • Patel HJ, Polidori DJ, Pilla JJ et al. Stabilization of chronic remodeling by asynchronous cardiomyoplasty in dilated cardiomyopathy: effects of a conditioned muscle wrap. Circulation96(10), 3665–3671 (1997).
  • Saavedra WF, Tunin RS, Paolocci N et al. Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J. Am. Coll. Cardiol.39(12), 2069–2076 (2002).
  • Sabbah HN. Effects of cardiac support device on reverse remodeling: molecular, biochemical, and structural mechanisms. J. Card. Fail.10(Suppl. 6), S207–S214 (2004).
  • Sabbah HN, Sharov VG, Gupta RC et al. Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment. Circ. Res.93(11), 1095–1101 (2003).
  • Acker MA, Bolling S, Shemin R et al. Mitral valve surgery in heart failure: insights from the Acorn clinical trial. J. Thorac. Cardiovasc. Surg.132(3), 568–577 (2006).
  • Fukamachi K and McCarthy PM. Initial safety and feasibility clinical trial of the myosplint device. J. Card. Surg.20(6), S43–S47 (2005).
  • Kashem A, Kashem S, Santamore WP et al. Early and late results of left ventricular reshaping by passive cardiac-support device in canine heart failure. J. Heart Lung Transplant.22(9), 1046–1053 (2003).
  • Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation98(7), 656–662 (1998).
  • James KB, McCarthy PM, Thomas JD et al. Effect of the implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation92(Suppl. 9), II191–II195 (1995).
  • Delgado R 3rd, Radovancevic B, Massin EK, Frazier OH, Benedict C. Neurohormonal changes after implantation of a left ventricular assist system. ASAIO J.44(4), 299–302 (1998).
  • Barbone A, Holmes JW, Heerdt PM et al. Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation104(6), 670–675 (2001).
  • Heerdt PM, Klotz S, Burkhoff D. Cardiomyopathic etiology and SERCA2a reverse remodeling during mechanical support of the failing human heart. Anesth. Analg.102(1), 32–37 (2006).
  • Klotz S, Barbone A, Reiken S et al. Left ventricular assist device support normalizes left and right ventricular β-adrenergic pathway properties. J. Am. Coll. Cardiol.45(5), 668–676 (2005).
  • Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation97(23), 2316–2322 (1998).
  • Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS. Mechanical unloading restores β-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation104(8), 881–886 (2001).
  • Heerdt PM, Holmes JW, Cai B et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation102(22), 2713–2719 (2000).
  • Jahanyar J, Joyce DL, Southard RE et al. Decorin-mediated transforming growth factor-β inhibition ameliorates adverse cardiac remodeling. J. Heart Lung Transplant.26(1), 34–40 (2007).
  • Wong K, Boheler KR, Bishop J, Petrou M, Yacoub MH. Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features. Cardiovasc. Res.37(1), 115–122 (1998).
  • Liggett SB, Tepe NM, Lorenz JN et al. Early and delayed consequences of β(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation101(14), 1707–1714 (2000).
  • Birks EJ, Tansley PD, Hardy J et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med.355(18), 1873–1884 (2006).
  • Klotz S, Deng MC, Stypmann J et al. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann. Thorac. Surg.77(1), 143–149 (2004).
  • Ochiai Y, McCarthy PM, Smedira NG et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation106(12 Suppl. 1), I198–I202 (2002).
  • Kavarana MN, Pessin-Minsley MS, Urtecho J et al. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann. Thorac. Surg.73(3), 745–750 (2002).
  • Francis GS, Anwar F, Bank AJ, Kubo SH, Jessurun J. Apoptosis, Bcl-2, and proliferating cell nuclear antigen in the failing human heart: observations made after implantation of left ventricular assist device. J. Card. Fail.5(4), 308–315 (1999).
  • Hall JL, Birks EJ, Grindle S et al. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur. Heart J.28(5), 613–627 (2006).
  • Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ. Res.98(6), 730–742 (2006).
  • Sanna B, Brandt EB, Kaiser RA et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl Acad. Sci. USA103(19), 7327–7332 (2006).
  • Matthes J, Jager A, Handrock R et al. Ca2+-dependent modulation of single human cardiac L-type calcium channels by the calcineurin inhibitor cyclosporine. J. Mol. Cell Cardiol.36(2), 241–255 (2004).
  • Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol.7(8), 589–600 (2006).
  • McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J. Clin. Invest.115(3), 538–546 (2005).
  • Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J. Clin. Invest.101(4), 812–818 (1998).
  • Wollert KC, Fiedler B, Gambaryan S et al. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension39(1), 87–92 (2002).
  • Takimoto E, Champion HC, Li M et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med.11(2), 214–222 (2005).
  • Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J. Am. Coll. Cardiol.28(2), 506–514 (1996).
  • Takimoto E, Champion HC, Li M et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J. Clin. Invest.115(5), 1221–1231 (2005).
  • Headrick JP, Hack B, Ashton KJ. Acute adenosinergic cardioprotection in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol.285(5), H1797–H1818 (2003).
  • Stowe DF, O’Brien WC, Chang D, Knop CS, Kampine JP. Reversal of endothelin-induced vasoconstriction by endothelium-dependent and -independent vasodilators in isolated hearts and vascular rings. J. Cardiovasc. Pharmacol.29(6), 747–754 (1997).
  • Taddei S, Arzilli F, Arrighi P, Salvetti A. Dipyridamole decreases circulating renin–angiotensin system activity in hypertensive patients. Am. J. Hypertens.5(1), 29–31 (1992).
  • Liao Y, Takashima S, Asano Y et al. Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ. Res.93(8), 759–766 (2003).
  • Villarreal F, Zimmermann S, Makhsudova L et al. Modulation of cardiac remodeling by adenosine: in vitro and in vivo effects. Mol. Cell Biochem.251(1–2), 17–26 (2003).
  • Deschamps AM, Spinale FG. Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovasc. Res.69(3), 666–676 (2006).
  • Yan AT, Yan RT, Spinale FG et al. Plasma matrix metalloproteinase-9 level is correlated with left ventricular volumes and ejection fraction in patients with heart failure. J. Card. Fail.12(7), 514–519 (2006).
  • Lindsey ML. Novel strategies to delineate matrix metalloproteinase (MMP)-substrate relationships and identify targets to block MMP activity. Mini. Rev. Med. Chem.6(11), 1243–1248 (2006).
  • Liu J, Masurekar MR, Vatner DE et al. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am. J. Physiol. Heart Circ. Physiol.285(6), H2587–H2591 (2003).
  • Little WC, Zile MR, Kitzman DW, Hundley WG, O’Brien TX, Degroof RC. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J. Card. Fail.11(3), 191–195 (2005).
  • Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355(12), 1222–1232 (2006).
  • Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ. Res.96(2), 151–163 (2005).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364(9429), 141–148 (2004).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Rosenzweig A. Cardiac cell therapy – mixed results from mixed cells. N. Engl. J. Med.355(12), 1274–1277 (2006).
  • Bukhari F, MacGillivray T, del Monte F, Hajjar RJ. Genetic maneuvers to ameliorate ventricular function in heart failure: therapeutic potential and future implications. Expert Rev. Cardiovasc. Ther.3(1), 85–97 (2005).
  • Sakata S, Lebeche D, Sakata N et al. Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts. Am. J. Physiol. Heart Circ. Physiol. DOI: 10.1152/ajpheart.01310.2006 (2007) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.