269
Views
65
CrossRef citations to date
0
Altmetric
Review

Role of red blood cell flow behavior in hemodynamics and hemostasis

, &
Pages 743-752 | Published online: 10 Jan 2014

References

  • Yedgar S, Koshkaryev A, Barshtein G. The red blood cell in vascular occlusion. Pathophysiol. Haemost. Thromb.32(5–6), 263–268 (2002).
  • Ben-Ami R, Barshtein G, Mardi T et al. A synergistic effect of albumin and fibrinogen on immunoglobulin-induced red blood cell aggregation. Am. J. Physiol. Heart Circ. Physiol.285(6), H2663–H2669 (2003).
  • Shiga T, Maeda N, Kon K. Erythrocyte rheology. Crit. Rev. Oncol. Hematol.10(1), 9–48 (1990).
  • Chien S, Jan K. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc. Res.5(2), 155–166 (1973).
  • Barshtein G, Tamir I, Yedgar S. Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation. Eur. Biophys. J.27(2), 177–181 (1998).
  • Pribush A, Zilberman-Kravits D, Meyerstein N. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J.36(2), 85–94 (2006).
  • Neu B, Meiselman HJ. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J.83(5), 2482–2490 (2002).
  • Rampling MW, Meiselman HJ, Neu B, Baskurt OK. Influence of cell-specific factors on red blood cell aggregation. Biorheology41(2), 91–112 (2004).
  • Jan KM, Usami S, Chien S. The disaggregation effect of dextran 40 on red cell aggregation in macromolecular suspensions. Biorheology19(4), 543–554 (1982).
  • Armstrong JK, Meiselman HJ, Fisher TC. Covalent binding of poly(ethylene glycol) (PEG) to the surface of red blood cells inhibits aggregation and reduces low shear blood viscosity. Am. J. Hematol.56(1), 26–28 (1997).
  • Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin. Hematol.30(3), 171–192 (1993).
  • Hebbel RP, Moldow CF, Steinberg MH. Modulation of erythrocyte–endothelial interactions and the vasocclusive severity of sickling disorders. Blood58(5), 947–952 (1981).
  • Brittain HA, Eckman JR, Swerlick RA, Howard RJ, Wick TM. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood81(8), 2137–2143 (1993).
  • Maeda N, Kon K, Imaizumi K, Sekiya M, Shiga T. Alteration of rheological properties of human erythrocytes by crosslinking of membrane proteins. Biochim. Biophys. Acta735(1), 104–112 (1983).
  • Nakajima T, Kon K, Maeda N, Tsunekawa K, Shiga T. Deformation response of red blood cells in oscillatory shear flow. Am. J. Physiol.259(4 Pt 2), H1071–H1078 (1990).
  • Ho M, Schollaardt T, Niu X et al. Characterization of Plasmodium falciparum-infected erythrocyte and P-selectin interaction under flow conditions. Blood91(12), 4803–4809 (1998).
  • Wen Z, Yao W, Xie L et al. Influence of neuraminidase on the characteristics of microrheology of red blood cells. Clin. Hemorheol. Microcirc.23(1), 51–57 (2000).
  • Martinez M, Vaya A, Gil L et al. The cholesterol/phospholipid ratio of the erythrocyte membrane in children with familial hypercholesterolemia. Its relationship with plasma lipids and red blood cell aggregability. Clin. Hemorheol. Microcirc.18(4), 259–263 (1998).
  • Sarr NG, Sall ND, Toure M, Diatta A, Seck I. [Phospholipid composition and content of the erythrocyte membrane in carriers of sickle cell trait]. Dakar Med.43(1), 5–8 (1998).
  • Setty BN, Kulkarni S, Rao AK, Stuart MJ. Fetal hemoglobin in sickle cell disease: relationship to erythrocyte phosphatidylserine exposure and coagulation activation. Blood96(3), 1119–1124 (2000).
  • Manodori AB, Barabino GA, Lubin BH, Kuypers FA. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood95(4), 1293–1300 (2000).
  • Junker M, Creutz CE. Ca(2+)-dependent binding of endonexin (annexin IV) to membranes: analysis of the effects of membrane lipid composition and development of a predictive model for the binding interaction. Biochemistry33(30), 8930–8940 (1994).
  • Telen MJ. Red blood cell surface adhesion molecules: their possible roles in normal human physiology and disease. Semin. Hematol.37(2), 130–142 (2000).
  • Eda K, Eda S, Sherman IW. Identification of peptides targeting the surface of Plasmodium falciparum-infected erythrocytes using a phage display peptide library. Am. J. Trop. Med. Hyg.71(2), 190–195 (2004).
  • Setty BN, Kulkarni S, Dampier CD, Stuart MJ. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood97(9), 2568–2573 (2001).
  • Joneckis CC, Ackley RL, Orringer EP, Wayner EA, Parise LV. Integrin α 4 β 1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood82(12), 3548–3555 (1993).
  • van Schravendijk MR, Handunnetti SM, Barnwell JW, Howard RJ. Normal human erythrocytes express CD36, an adhesion molecule of monocytes, platelets, and endothelial cells. Blood80(8), 2105–2114 (1992).
  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell61(7), 1303–1313 (1990).
  • Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J. Cell. Biol.116(3), 817–825 (1992).
  • Nunomura W, Takakuwa Y, Tokimitsu R et al. Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J. Biol. Chem.272(48), 30322–30328 (1997).
  • Kaul DK, Nagel RL, Chen D, Tsai HM. Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion. Blood81(9), 2429–2438 (1993).
  • Rattan V, Shen Y, Sultana C, Kumar D, Kalra VK. Diabetic RBC-induced oxidant stress leads to transendothelial migration of monocyte-like HL-60 cells. Am. J. Physiol.273(2 Pt 1), E369–E375 (1997).
  • Chen S, Eldor A, Barshtein G et al. Enhanced aggregability of red blood cells of β-thalassemia major patients. Am. J. Physiol.270(6 Pt 2), H1951–H1956 (1996).
  • Hovav T, Goldfarb A, Artmann G, Yedgar S, Barshtein G. Enhanced adherence of β-thalassaemic erythrocytes to endothelial cells. Br. J. Haematol.106(1), 178–181 (1999).
  • Yedgar S, Hovav T, Barshtein G. Red blood cell intercellular interactions in oxidative stress states. Clin. Hemorheol. Microcirc.21(3–4), 189–193 (1999).
  • Baskurt OK, Temiz A, Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic. Biol. Med.24(1), 102–110 (1998).
  • Ami RB, Barshtein G, Zeltser D et al. Parameters of red blood cell aggregation as correlates of the inflammatory state. Am. J. Physiol. Heart Circ. Physiol.280(5), H1982–H1988 (2001).
  • Ben-Ami R, Sheinman G, Yedgar S et al. Thrombolytic therapy reduces red blood cell aggregation in plasma without affecting intrinsic aggregability. Thromb. Res.105(6), 487–492 (2002).
  • Morrow DA, Rifai N, Antman EM et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis In Myocardial Infarction. J. Am. Coll. Cardiol.31(7), 1460–1465 (1998).
  • Samocha-Bonet D, Ben-Ami R, Shapira I et al. Flow-resistant red blood cell aggregation in morbid obesity. Int. J. Obes. Relat. Metab. Disord.28(12), 1528–1534 (2004).
  • Fusman R, Zeltser D, Rotstein R et al. INFLAMET: an image analyzer to display erythrocyte adhesiveness/aggregation. Eur. J. Intern. Med.11(5), 271–276 (2000).
  • Maeda N, Shiga T. Opposite effect of albumin on the erythrocyte aggregation induced by immunoglobulin G and fibrinogen. Biochim. Biophys. Acta855(1), 127–135 (1986).
  • Weng X, Roederer GO, Beaulieu R, Cloutier G. Contribution of acute-phase proteins and cardiovascular risk factors to erythrocyte aggregation in normolipidemic and hyperlipidemic individuals. Thromb. Haemost.80(6), 903–908 (1998).
  • Reinhart WH, Nagy C. Albumin affects erythrocyte aggregation and sedimentation. Eur. J. Clin. Invest.25(7), 523–528 (1995).
  • Parthasarathi K, Lipowsky HH. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am. J. Physiol.277(6 Pt 2), H2145–H2157 (1999).
  • McHedlishvili G. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Clin. Hemorheol. Microcirc.19(4), 315–325 (1998).
  • Pantely GA, Swenson LJ, Tamblyn CH et al. Increased vascular resistance due to a reduction in red cell deformability in the isolated hind limb of swine. Microvasc. Res.35(1), 86–100 (1988).
  • Dikmenoglu N, Ciftci B, Ileri E et al. Erythrocyte deformability, plasma viscosity and oxidative status in patients with severe obstructive sleep apnea syndrome. Sleep Med.7(3), 255–261 (2006).
  • Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC. Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules. Am. J. Physiol. Heart Circ. Physiol.286(1), H113–H120 (2004).
  • Kim S, Kong RL, Popel AS, Intaglietta M, Johnson PC. A computer-based method for determination of the cell-free layer width in microcirculation. Microcirculation13(3), 199–207 (2006).
  • Koscielny J, Jung EM, Mrowietz C, Kiesewetter H, Latza R. Blood fluidity, fibrinogen, and cardiovascular risk factors of occlusive arterial disease: results of the Aachen study. Clin. Hemorheol. Microcirc.31(3), 185–195 (2004).
  • Hebbel RP. Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies. N. Engl. J. Med.342(25), 1910–1912 (2000).
  • Hebbel RP. Perspectives series: cell adhesion in vascular biology. Adhesive interactions of sickle erythrocytes with endothelium. J. Clin. Invest.99(11), 2561–2564 (1997).
  • Dhermy D, Simeon J, Wautier MP, Boivin P, Wautier JL. Role of membrane sialic acid content in the adhesiveness of aged erythrocytes to human cultured endothelial cells. Biochim. Biophys. Acta904(2), 201–206 (1987).
  • Merrill EW, Cheng CS, Pelletier GA. Yield stress of normal human blood as a function of endogenous fibrinogen. J. Appl. Physiol.26(1), 1–3 (1969).
  • Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC. Effect of erythrocyte aggregation on velocity profiles in venules. Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001).
  • Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC. Erythrocyte margination and sedimentation in skeletal muscle venules. Am. J. Physiol. Heart Circ. Physiol.281(2), H951–H958 (2001).
  • Maeda N, Suzuki Y, Tanaka J, Tateishi N. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol.271(6 Pt 2), H2454–H2461 (1996).
  • Suzuki Y, Tateishi N, Soutani M, Maeda N. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation3(1), 49–57 (1996).
  • Warkentin TE, Barr RD, Ali MA, Mohandas N. Recurrent acute splenic sequestration crisis due to interacting genetic defects: hemoglobin SC disease and hereditary spherocytosis. Blood75(1), 266–270 (1990).
  • Andrews DA, Low PS. Role of red blood cells in thrombosis. Curr. Opin. Hematol.6(2), 76–82 (1999).
  • Hellem AJ, Borchgrevink CF, Ames SB. The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br. J. Haematol.7, 42–50 (1961).
  • Quaknine-Orlando B, Samama CM, Riou B et al. Role of the hematocrit in a rabbit model of arterial thrombosis and bleeding. Anesthesiology90(5), 1454–1461 (1999).
  • Soinne L, Saimanen E, Malmberg-Ceder K et al. Association of the fibrinolytic system and hemorheology with symptoms in patients with carotid occlusive disease. Cerebrovasc. Dis.20(3), 172–179 (2005).
  • Escolar G, Garrido M, Mazzara R, Castillo R, Ordinas A. Experimental basis for the use of red cell transfusion in the management of anemic-thrombocytopenic patients. Transfusion28(5), 406–411 (1988).
  • Gaudard A, Varlet-Marie E, Monnier JF et al. Exercise-induced central retinal vein thrombosis: possible involvement of hemorheological disturbances. A case report. Clin. Hemorheol. Microcirc.27(2), 115–122 (2002).
  • Berliner S, Rogowski O, Aharonov S et al. Erythrocyte adhesiveness/aggregation: a novel biomarker for the detection of low-grade internal inflammation in individuals with atherothrombotic risk factors and proven vascular disease. Am. Heart J.149(2), 260–267 (2005).
  • Assayag EB, Bornstein N, Shapira I et al. Inflammation-sensitive proteins and erythrocyte aggregation in atherothrombosis. Int. J. Cardiol.98(2), 271–276 (2005).
  • Sloop GD. A unifying theory of atherogenesis. Med. Hypotheses47(4), 321–325 (1996).
  • Aarts PA, Heethaar RM, Sixma JJ. Red blood cell deformability influences platelets – vessel wall interaction in flowing blood. Blood64(6), 1228–1233 (1984).
  • Uskudar O, Erdem A, Demiroglu H, Dikmenoglu N. Decreased erythrocyte deformability in Behcet’s disease. Clin. Hemorheol. Microcirc.33(2), 89–94 (2005).
  • Yasui K, Ohta K, Kobayashi M, Aizawa T, Komiyama A. Successful treatment of Behcet disease with pentoxifylline. Ann. Intern. Med.124(10), 891–893 (1996).
  • Brown MD, Wick TM, Eckman JR. Activation of vascular endothelial cell adhesion molecule expression by sickle blood cells. Pediatr. Pathol. Mol. Med.20(1), 47–72 (2001).
  • Stuart MJ, Setty BN. Acute chest syndrome of sickle cell disease: new light on an old problem. Curr. Opin. Hematol.8(2), 111–122 (2001).
  • Saldanha C, Sargento L, Monteiro J et al. Impairment of the erythrocyte membrane fluidity in survivors of acute myocardial infarction. A prospective study. Clin. Hemorheol. Microcirc.20(2), 111–116 (1999).
  • Mares M, Bertolo C, Terribile V, Girolami A. Hemorheological study in patients with coronary artery disease. Cardiology78(2), 111–116 (1991).
  • Kempe DS, Akel A, Lang PA et al. Suicidal erythrocyte death in sepsis. J. Mol. Med.85(3), 269–277 (2007).
  • Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am. J. Respir. Crit. Care Med.157(2), 421–427 (1998).
  • Negrean V, Suciu I, Sampelean D, Cozma A. Rheological changes in diabetic microangiopathy. Rom. J. Intern. Med.42(2), 407–413 (2004).
  • Perez SM, Riquelme B, Acosta I, Valverde J, Milani A. Erythrocytes dynamic viscoelasticity in β-thalassaemia minor. Clin. Hemorheol. Microcirc.35(1–2), 311–316 (2006).
  • Nowak E, Wyrwicz G, Dabrowski Z, Smolenski O, Spodaryk K. Effects of phenylhydrazine or recombinant human erythropoietin on deformability and activity of dehydrogenase glucose-6-phosphate and acetylcholinesterase in Wistar rats blood enriched in reticulocytes. Folia Biol. (Krakow)51(3–4), 195–199 (2003).
  • Szapary L, Horvath B, Marton Z et al. Hemorheological disturbances in patients with chronic cerebrovascular diseases. Clin. Hemorheol. Microcirc.31(1), 1–9 (2004).
  • Ciuffetti G, Pasqualini L, Pirro M et al. Blood rheology in men with essential hypertension and capillary rarefaction. J. Hum. Hypertens.16(8), 533–537 (2002).
  • Thomas DJ. Rheology and strokes. Curr. Opin. Neurol. Neurosurg.5(1), 44–48 (1992).
  • Stuart J, Johnson CS. Rheology of the sickle cell disorders. Baillieres Clin. Haematol.1(3), 747–775 (1987).
  • Kaul DK, Liu XD, Zhang X et al. Inhibition of sickle red cell adhesion and vaso-occlusion in the microcirculation by antioxidants. Am. J. Physiol. Heart Circ. Physiol.291, H167–H175 (2006).
  • Barshtein G, Ponizovsky AM, Nechamkin Y et al. Aggregability of red blood cells of schizophrenia patients with negative syndrome is selectively enhanced. Schizophr. Bull.30(4), 913–922 (2004).
  • Wen Z, Xie J, Guan Z et al. A study of hemorheological behaviour for patients with Alzheimer’s disease at the early stages. Clin. Hemorheol. Microcirc.22(4), 261–266 (2000).
  • Hovav T, Yedgar S, Manny N, Barshtein G. Alteration of red cell aggregability and shape during blood storage. Transfusion39(3), 277–281 (1999).
  • Anniss AM, Sparrow RL. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion46(9), 1561–1567 (2006).
  • Berezina TL, Zaets SB, Morgan C et al. Influence of storage on red blood cell rheological properties. J. Surg. Res.102(1), 6–12 (2002).
  • Ben-Hur E, Barshtein G, Chen S, Yedgar S. Photodynamic treatment of red blood cell concentrates for virus inactivation enhances red blood cell aggregation: protection with antioxidants. Photochem. Photobiol.66(4), 509–512 (1997).
  • Hardeman MR, Besselink GA, Ebbing I et al. Laser-assisted optical rotational cell analyzer measurements reveal early changes in human RBC deformability induced by photodynamic treatment. Transfusion43(11), 1533–1537 (2003).
  • Adar T, Ben-Ami R, Elstein D et al. Aggregation of red blood cells in patients with Gaucher disease. Br. J. Haematol.134(4), 432–437 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.