30
Views
8
CrossRef citations to date
0
Altmetric
Review

Novel cardiovascular MRI and CT methods for evaluation of ischemic heart disease

, &
Pages 791-802 | Published online: 10 Jan 2014

References

  • Sievers B, Elliott MD, Hurwitz LM et al. Rapid detection of myocardial infarction by subsecond, free-breathing delayed contrast-enhancement cardiovascular magnetic resonance. Circulation115(2), 236–244 (2007).
  • Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation104(25), 3158–3167 (2001).
  • Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation104(24), 2981–2989 (2001).
  • Canty JM Jr, Fallavollita JA. Hibernating myocardium. J. Nucl. Cardiol.12(1), 104–119 (2005).
  • Klein C, Nekolla SG, Bengel FM et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation105(2), 162–167 (2002).
  • Kim RJ, Fieno DS, Parrish TB et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation100(19), 1992–2002 (1999).
  • Stork A, Muellerleile K, Bansmann PM et al. Value of T2-weighted, first-pass and delayed enhancement, and cine CMR to differentiate between acute and chronic myocardial infarction. Eur. Radiol.17(3), 610–617 (2007).
  • Kellman P, Larson AC, Hsu LY et al. Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction. Magn. Reson. Med.53(1), 194–200 (2004).
  • Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation96(3), 793–800 (1997).
  • Bax JJ, Schinkel AF, Boersma E et al. Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation108(Suppl. 1), II39–II42 (2003).
  • Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med.343(20), 1445–1453 (2000).
  • Lardo AC, Cordeiro MA, Silva C et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation113(3), 394–404 (2006).
  • Gerber BL, Belge B, Legros GJ et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation113(6), 823–833 (2006).
  • Lee V. Cardiovascular MR Imaging: Physical Principles to Practical Protocols. Lippincott Williams & Wilkins, PA, USA (2005).
  • Paetsch I, Jahnke C, Fleck E, Nagel E. Current clinical applications of stress wall motion analysis with cardiac magnetic resonance imaging. Eur. J. Echocardiogr.6(5), 317–326 (2005).
  • Paetsch I, Jahnke C, Wahl A et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation110(7), 835–842 (2004).
  • Tello R, Hartnell GG, Hill TC et al. First-pass evaluation of myocardial output during dipyridamole stress using turbo-FLASH magnetic resonance imaging. Invest. Radiol.31(11), 690–695 (1996).
  • Wang Y, Moin K, Akinboboye O, Reichek N. Myocardial first pass perfusion: steady-state free precession versus spoiled gradient echo and segmented echo planar imaging. Magn. Reson. Med.54(5), 1123–1129 (2005).
  • Laddis T, Manning WJ, Danias PG. Cardiac MRI for assessment of myocardial perfusion: current status and future perspectives. J. Nucl. Cardiol.8(2), 207–214 (2001).
  • Jerosch-Herold M, Muehling O, Wilke N. MRI of myocardial perfusion. Semin. Ultrasound CT MR27(1), 2–10 (2006).
  • Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med. Phys.29(5), 886–897 (2002).
  • Wu KC, Zerhouni EA, Judd RM et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation97(8), 765–772 (1998).
  • Selvanayagam JB, Jerosch-Herold M, Porto I et al. Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation112(21), 3289–3296 (2005).
  • Hendel RC, Patel MR, Kramer CM et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J. Am. Coll. Cardiol.48(7), 1475–1497 (2006).
  • Georgiou D, Wolfkiel C, Brundage BH. Ultrafast computed tomography for the physiological evaluation of myocardial perfusion. Am. J. Card. Imaging8(2), 151–158 (1994).
  • Mahnken AH, Gunther RW, Krombach G. [Contrast-enhanced MR and MSCT for the assessment of myocardial viability]. Rofo178(8), 771–780 (2006).
  • George RT, Silva C, Cordeiro MA et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J. Am. Coll. Cardiol.48(1), 153–160 (2006).
  • Nikolaou K, Sanz J, Poon M et al. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur. Radiol.15(5), 864–871 (2005).
  • Nieman K, Cury RC, Ferencik M et al. Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am. J. Cardiol.98(3), 303–308 (2006).
  • Kondos GT, Hoff JA, Sevrukov A et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation107(20), 2571–2576 (2003).
  • Rumberger JA, Kaufman L. A rosetta stone for coronary calcium risk stratification: agatston, volume, and mass scores in 11,490 individuals. Am. J. Roentgenol.181(3), 743–748 (2003).
  • Wayhs R, Zelinger A, Raggi P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J. Am. Coll. Cardiol.39(2), 225–230 (2002).
  • O’Rourke RA, Brundage BH, Froelicher VF et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation102(1), 126–140 (2000).
  • Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA291(2), 210–215 (2004).
  • Greenland P, Bonow RO, Brundage BH et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J. Am. Coll. Cardiol.49(3), 378–402 (2007).
  • Greenland P, Bonow RO, Brundage BH et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation115(3), 402–426 (2007).
  • Hoffmann U, Ferencik M, Cury RC, Pena AJ. Coronary CT angiography. J. Nucl. Med.47(5), 797–806 (2006).
  • Giesler T, Baum U, Ropers D et al. Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. Am. J. Roentgenol.179(4), 911–916 (2002).
  • Schroeder S, Kopp AF, Kuettner A et al. Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin. Imaging26(2), 106–111 (2002).
  • Ropers D, Baum U, Pohle K et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation107(5), 664–666 (2003).
  • Nieman K, Rensing BJ, van Geuns RJ et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart88(5), 470–474 (2002).
  • Johnson TR, Nikolaou K, Wintersperger BJ et al. Dual-source CT cardiac imaging: initial experience. Eur. Radiol.16(7), 1409–1415 (2006).
  • Scheffel H, Alkadhi H, Plass A et al. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur. Radiol.,16(12), 2739–2747 (2006).
  • Kuettner A, Beck T, Drosch T et al. Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J. Am. Coll. Cardiol.45(1), 123–127 (2005).
  • Mollet NR, Cademartiri F, Krestin GP et al. Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J. Am. Coll. Cardiol.45(1), 128–132 (2005).
  • Sanz J, Rius T, Kuschnir P et al. The importance of end-systole for optimal reconstruction protocol of coronary angiography with 16-slice multidetector computed tomography. Invest. Radiol.40(3), 155–163 (2005).
  • Leber AW, Becker A, Knez A et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J. Am. Coll. Cardiol.47(3), 672–677 (2006).
  • Nikolaou K, Knez A, Rist C et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. Am. J. Roentgenol.187(1), 111–117 (2006).
  • Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J. Am. Coll. Cardiol.46(3), 552–557 (2005).
  • Rodriguez-Granillo GA, Rosales MA, Degrossi E, Durbano I, Rodriguez AE. Modified scan protocol using multislice CT coronary angiography allows high quality acquisitions in obese patients: a case report. Int. J. Cardiovasc. Imaging23(3) 389–392 (2007).
  • Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur. Heart J.9(12), 1317–1323 (1988).
  • de Weert TT, Ouhlous M, Meijering E et al. In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. Arterioscler. Thromb. Vasc. Biol.26(10), 2366–2372 (2006).
  • Ferencik M, Chan RC, Achenbach S et al. Arterial wall imaging: evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology240(3), 708–716 (2006).
  • Halliburton SS, Schoenhagen P, Nair A et al. Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row computed tomography study of pressure-perfused, human ex vivo coronary arteries. Coron. Artery Dis.17(6), 553–560 (2006).
  • Cademartiri F, Mollet NR, Runza G et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur. Radiol.15(7), 1426–1431 (2005).
  • Ferencik M, Nieman K, Achenbach S. Noncalcified and calcified coronary plaque detection by contrast-enhanced multi-detector computed tomography: a study of interobserver agreement. J. Am. Coll. Cardiol.47(1), 207–209 (2006).
  • Wilensky RL, Song HK, Ferrari VA. Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J. Am. Coll. Cardiol.47(8 Suppl.), C48–C56 (2006).
  • Leber AW, Knez A, von Ziegler F et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J. Am. Coll. Cardiol.46(1), 147–154 (2005).
  • Mollet NR, Cademartiri F, van Mieghem CA et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation112(15), 2318–2323 (2005).
  • Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation107(6), 917–922 (2003).
  • Wintersperger BJ, Nikolaou K. Basics of cardiac MDCT: techniques and contrast application. Eur. Radiol.15(Suppl. 2), B2–B9 (2005).
  • Hausleiter J, Meyer T, Hadamitzky M et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation113(10), 1305–1310 (2006).
  • Stuber M, Botnar RM, Danias PG et al. Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J. Magn. Reson. Imaging10(5), 790–799 (1999).
  • Sakuma H, Ichikawa Y, Suzawa N et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology237(1), 316–321 (2005).
  • Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J. Am. Coll. Cardiol.48(10), 1946–1950 (2006).
  • Paetsch I, Jahnke C, Barkhausen J et al. Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR angiography using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22956). J. Cardiovasc. Magn. Reson.8(3), 509–516 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.