49
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of image-guided vascular intervention in therapeutic angiogenesis translational research

, &
Pages 903-915 | Published online: 10 Jan 2014

References

  • Zerhouni E. Medicine. The NIH Roadmap. Science302(5642), 63–72 (2003).
  • Hirsch AT, Criqui MH, Treat-Jacobson D et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA286(11), 1317–1324 (2001).
  • Kannel WB, McGee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J. Am. Geriatr. Soc.33(1), 13–18 (1985).
  • Dormandy J, Heeck L, Vig S. The natural history of claudication: risk to life and limb. Semin. Vasc. Surg.12(2), 123–137 (1999).
  • Albers M, Fratezi AC, De Luccia N. Assessment of quality of life of patients with severe ischemia as a result of infrainguinal arterial occlusive disease. J. Vasc. Surg.16(1), 54–59 (1992).
  • McDermott MM, Liu K, Greenland P et al. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA292(4), 453–461 (2004).
  • Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J. Vasc. Surg.31(1 Pt 2), S1–S296 (2000).
  • Hirsch AT, Haskal ZJ, Hertzer NR et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation113(11), e463–e654 (2006).
  • Hankey GJ, Norman PE, Eikelboom JW. Medical treatment of peripheral arterial disease. JAMA295(5), 547–553 (2006).
  • Dawson DL, Cutler BS, Hiatt WR et al. A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am. J. Med.109(7), 523–530 (2000).
  • Money SR, Herd JA, Isaacsohn JL et al. Effect of cilostazol on walking distances in patients with intermittent claudication caused by peripheral vascular disease. J. Vasc. Surg.27(2), 267–275 (1998).
  • Strandness DE Jr, Dalman RL, Panian S et al. Effect of cilostazol in patients with intermittent claudication: a randomized, double-blind, placebo-controlled study. Vasc. Endovascular Surg.36(2), 83–91 (2002).
  • Dawson DL, Cutler BS, Meissner MH, Strandness DE Jr. Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation98(7), 678–686 (1998).
  • Beebe HG, Dawson DL, Cutler BS et al. A new pharmacological treatment for intermittent claudication: results of a randomized, multicenter trial. Arch. Intern. Med.159(17), 2041–2050 (1999).
  • Mohler ER 3rd, Beebe HG, Salles-Cuhna S et al. Effects of cilostazol on resting ankle pressures and exercise-induced ischemia in patients with intermittent claudication. Vasc. Med.6(3), 151–156 (2001).
  • Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA274(12), 975–980 (1995).
  • Nehler MR, Hiatt WR. Exercise therapy for claudication. Ann. Vasc. Surg.13(1), 109–114 (1999).
  • Treesak C, Kasemsup V, Treat-Jacobson D, Nyman JA, Hirsch AT. Cost-effectiveness of exercise training to improve claudication symptoms in patients with peripheral arterial disease. Vasc. Med.9(4), 279–285 (2004).
  • Bakal CW. Advances in imaging technology and the growth of vascular and interventional radiology: a brief history. J. Vasc. Interv. Radiol.14(7), 855–860 (2003).
  • Liddell RP, Weiss CR, Hofmann LV. Therapeutic angiogenesis: the next frontier for interventional radiology. Tech. Vasc. Interv. Radiol.7(1), 40–48 (2004).
  • Ito WD, Arras M, Scholz D et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am. J. Physiol.273(3 Pt 2), H1255–H1265 (1997).
  • Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler. Thromb. Vasc. Biol.23(7), 1143–1151 (2003).
  • Hershey JC, Baskin EP, Glass JD et al. Revascularization in the rabbit hindlimb: dissociation between capillary sprouting and arteriogenesis. Cardiovasc. Res.49(3), 618–625 (2001).
  • Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J. Cell. Mol. Med.10(1), 45–55 (2006).
  • Pipp F, Boehm S, Cai WJ et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler. Thromb. Vasc. Biol.24(9), 1664–1668 (2004).
  • Eitenmuller I, Volger O, Kluge A et al. The range of adaptation by collateral vessels after femoral artery occlusion. Circ. Res.99(6), 656–662 (2006).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation109(21), 2487–2491 (2004).
  • Rajagopalan S, Mohler ER 3rd, Lederman RJ et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a Phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation108(16), 1933–1938 (2003).
  • Lederman RJ, Mendelsohn FO, Anderson RD et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet359(9323), 2053–2058 (2002).
  • Makinen K, Manninen H, Hedman M et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded Phase II study. Mol. Ther.6(1), 127–133 (2002).
  • Hughes GC, Annex BH. Angiogenic therapy for coronary artery and peripheral arterial disease. Expert Rev. Cardiovasc. Ther.3(3), 521–535 (2005).
  • Ennett AB, Kaigler D, Mooney DJ. Temporally regulated delivery of VEGF in vitro and in vivo.J. Biomed. Mater. Res.79(1), 176–184 (2006).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo.Science247(4949), 1465–1468 (1990).
  • Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv. Genet.54, 3–20 (2005).
  • Gounis MJ, Spiga MG, Graham RM et al. Angiogenesis is confined to the transient period of VEGF expression that follows adenoviral gene delivery to ischemic muscle. Gene Ther.12(9), 762–771 (2005).
  • Dor Y, Djonov V, Abramovitch R et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J.21(8), 1939–1947 (2002).
  • Ozawa CR, Banfi A, Glazer NL et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest.113(4), 516–527 (2004).
  • Epstein SE, Stabile E, Kinnaird T et al. Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation109(23), 2826–2831 (2004).
  • Celletti FL, Waugh JM, Amabile PG et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med.7(4), 425–429 (2001).
  • Shams N, Ianchulev T. Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol. Clin. North Am.19(3), 335–344 (2006).
  • Semenza GL. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest128(Suppl. 6), S592–S594 (2005).
  • Lee CW, Stabile E, Kinnaird T et al. Temporal patterns of gene expression after acute hindlimb ischemia in mice: insights into the genomic program for collateral vessel development. J. Am. Coll. Cardiol.43(3), 474–482 (2004).
  • Kondoh K, Koyama H, Miyata T et al. Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc. Res.61(1), 132–142 (2004).
  • Cao R, Brakenhielm E, Pawliuk R et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med.9(5), 604–613 (2003).
  • Nakagami H, Morishita R, Maeda K et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb.13(2), 77–81 (2006).
  • Iwase T, Nagaya N, Fujii T et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc. Res.66(3), 543–551 (2005).
  • Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109(12), 1543–1549 (2004).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation109(22), 2692–2697 (2004).
  • Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation109(10), 1292–1298 (2004).
  • Nakagami H, Maeda K, Morishita R et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler. Thromb. Vasc. Biol.25(12), 2542–2547 (2005).
  • Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol.287(3), C572–C579 (2004).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J.28(6), 766–772 (2007).
  • Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from Type 2 diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation106(22), 2781–2786 (2002).
  • Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc. Res.49(3), 554–560 (2001).
  • Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy5(6), 485–489 (2003).
  • McIntosh K, Zvonic S, Garrett S et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro.Stem Cells24(5), 1246–1253 (2006).
  • Nauta AJ, Westerhuis G, Kruisselbrink AB et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood108(6), 2114–2120 (2006).
  • Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med.5(3), 309–313 (1999).
  • Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech.60(1), 107–114 (2003).
  • Tang GL, Chang DS, Sarkar R, Wang R, Messina LM. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J. Vasc. Surg.41(2), 312–320 (2005).
  • Baffour R, Garb JL, Kaufman J et al. Angiogenic therapy for the chronically ischemic lower limb in a rabbit model. J. Surg. Res.93(2), 219–229 (2000).
  • Liddell RP, Patel TH, Weiss CR et al. Endovascular model of rabbit hindlimb ischemia: a platform to evaluate therapeutic angiogenesis. J. Vasc. Interv. Radiol.16(7), 991–998 (2005).
  • Weinberg PD, Ross Ethier C. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J. Biomech.40(7) 1594–1589 (2006).
  • Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann LV. Constitutively active HIF-1α improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc. Res.68(1), 144–154 (2005).
  • Nikol S, Armeanu S, Engelmann MG et al. Evaluation of endovascular techniques for creating a porcine femoral artery occlusion model. J. Endovasc. Ther.8(4), 401–407 (2001).
  • van Weel V, de Vries M, Voshol PJ et al. Hypercholesterolemia reduces collateral artery growth more dominantly than hyperglycemia or insulin resistance in mice. Arterioscler. Thromb. Vasc. Biol.26(6), 1383–1390 (2006).
  • de Lussanet QG, van Golde JC, Beets-Tan RG et al. Dynamic contrast-enhanced MRI of muscle perfusion combined with MR angiography of collateral artery growth in a femoral artery ligation model. NMR Biomed. (2007) (Epub ahead of print).
  • Isbell DC, Epstein FH, Zhong X et al. Calf muscle perfusion at peak exercise in peripheral arterial disease: measurement by first-pass contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging (2007).
  • Kiessling F, Morgenstern B, Zhang C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr. Med. Chem.14(1), 77–91 (2007).
  • Foster-Gareau P, Heyn C, Alejski A, Rutt BK. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Reson. Med.49(5), 968–971 (2003).
  • Dodd SJ, Williams M, Suhan JP et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J.76(1 Pt 1), 103–109 (1999).
  • Cunningham CH, Arai T, Yang PC et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med.53(5), 999–1005 (2005).
  • Arbab AS, Yocum GT, Kalish H et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood104(4), 1217–1223 (2004).
  • de Vries IJ, Lesterhuis WJ, Barentsz JO et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol.23(11), 1407–1413 (2005).
  • Anderson SA, Glod J, Arbab AS et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood105(1), 420–425 (2005).
  • Kraitchman DL, Heldman AW, Atalar E et al.In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation107(18), 2290–2293 (2003).
  • Kraitchman DL, Tatsumi M, Gilson WD et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation112(10), 1451–1461 (2005).
  • Bos C, Delmas Y, Desmouliere A et al.In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology233(3), 781–789 (2004).
  • Cahill KS, Gaidosh G, Huard J et al. Noninvasive monitoring and tracking of muscle stem cell transplants. Transplantation78(11), 1626–1633 (2004).
  • Dick AJ, Guttman MA, Raman VK et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation108(23), 2899–2904 (2003).
  • Cyrus T, Winter PM, Caruthers SD, Wickline SA, Lanza GM. Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev. Cardiovasc. Ther.3(4), 705–715 (2005).
  • Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology228(2), 480–487 (2003).
  • Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol.386, 275–299 (2004).
  • Arbab AS, Jordan EK, Wilson LB et al.In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum. Gene Ther.15(4), 351–360 (2004).
  • Arbab AS, Yocum GT, Rad AM et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed.18(8), 553–559 (2005).
  • Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med.11(4), 450–454 (2005).
  • Cao F, Lin S, Xie X et al.In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation113(7), 1005–1014 (2006).
  • Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation106(2), 180–183 (2002).
  • Wagner B, Anton M, Nekolla SG et al. Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. J. Am. Coll. Cardiol.48(10), 2107–2115 (2006).
  • Cai W, Chen K, Mohamedali KA et al. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med.47(12), 2048–2056 (2006).
  • Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4–18F-fluorobenzamido)ethyl] maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αv β3 integrin expression. J. Nucl. Med.47(7), 1172–1180 (2006).
  • Zhang X, Chen X. Preparation and characterization of 99mTc(CO)3-BPy-RGD complex as αv β3 integrin receptor-targeted imaging agent. Appl. Radiat. Isot.65(1), 70–78 (2007).
  • Fani M, Psimadas D, Zikos C et al. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res.26(1A), 431–434 (2006).
  • Beer AJ, Haubner R, Goebel M et al. Biodistribution and pharmacokinetics of the αv β3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med.46(8), 1333–1341 (2005).
  • Penuelas I, Mazzolini G, Boan JF et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology128(7), 1787–1795 (2005).
  • Jacobs A, Voges J, Reszka R et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet358(9283), 727–729 (2001).
  • Ginsburg DS, Calos MP. Site-specific integration with phiC31 integrase for prolonged expression of therapeutic genes. Adv. Genet.54, 179–187 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.