161
Views
22
CrossRef citations to date
0
Altmetric
Review

In vivo wall shear stress measurements using phase-contrast MRI

, , &
Pages 927-938 | Published online: 10 Jan 2014

References

  • Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res.66(4), 1045–1066 (1990).
  • Feldman CL, Stone PH. Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr. Opin. Cardiol.15(6), 430–440 (2000).
  • Kassab GS, Fung YC. The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann. Biomed. Eng.23(1), 13–20 (1995).
  • Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA282(21), 2035–2042 (1999).
  • Chatzizisis YS, Coskun AU, Jonas M et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol.49(25), 2379–2393 (2007).
  • de Nigris F, Williams-Ignarro S, Lerman LO et al. Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc. Natl Acad. Sci. USA.102(13), 4896–4901 (2005).
  • Voetsch B, Jin RC, Loscalzo J. Nitric oxide insufficiency and atherothrombosis. Histochem. Cell Biol.122(4), 353–367 (2004).
  • Ravensbergen J, Ravensbergen JW, Krijger JK, Hillen B, Hoogstraten HW. Localizing role of hemodynamics in atherosclerosis in several human vertebrobasilar junction geometries. Arterioscler. Thromb. Vasc. Biol.18(5), 708–716 (1998).
  • Butcher JT, Tressel S, Johnson T et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler. Thromb. Vasc. Biol.26(1), 69–77 (2006).
  • Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest.85(1), 9–23 (2005).
  • Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. NY Acad. Sci.902, 230–239; discussion 239–240 (2000).
  • Davies PF. Flow-mediated endothelial mechanotransduction. Physiol. Rev.75(3), 519–560 (1995).
  • Wang N, Miao H, Li YS et al. Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem. Biophys. Res. Commun.341(4), 1244–1251 (2006).
  • Oshinski JN, Curtin JL, Loth F. Mean-average wall shear stress measurements in the common carotid artery. J. Cardiovasc. Magn. Reson.8(5), 717–722 (2006).
  • Strackee J, Westerhof N. The Physics of Heart and Circulation. Institute of Physics Publishing, Bristol, UK (1993).
  • Rowan JO. Physics and the Circulation. Lenihan PJMA (Ed.) Adam Hilger Ltd, Bristol, UK (1981).
  • Milnor W. Hemodynamics. Lippincott, Williams & Wilkins, PA, USA (1982).
  • Nichols W, O’Rourke M. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. Hodder Arnold, London, UK (2005).
  • Reneman RS, Arts T, Hoeks AP. Wall Shear Stress - an important determinant of endothelial cell function and structure - in the arterial system in vivo. Discrepancies with theory. J. Vasc. Res.43(3), 251–269 (2006).
  • Lou Z, Yang WJ, Stein PD. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles. J. Biomech.26(4–5), 383–390 (1993).
  • Oshinski JN, Ku DN, Mukundan S Jr, Loth F, Pettigrew RI. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. J. Magn. Reson. Imaging.5(6), 640–647 (1995).
  • Guo Z, Moreau M, Rickey DW, Picot PA, Fenster A. Quantitative investigation of in vitroflow using three-dimensional colour Doppler ultrasound. Ultrasound Med. Biol.21(6), 807–816 (1995).
  • Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics22(3), 651–671 (2002).
  • Greil G, Geva T, Maier SE, Powell AJ. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J. Magn. Reson. Imaging.15(1), 47–54 (2002).
  • Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am. J. Cardiol.91(12), 1523–1525, (2003).
  • Gatehouse PD, Keegan J, Crowe LA et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur. Radiol.15(10), 2172–2184 (2005).
  • Shaaban AM, Duerinckx AJ. Wall shear stress and early atherosclerosis: a review. Am. J. Roentgenol.174(6), 1657–1665 (2000).
  • Yim P, Demarco K, Castro MA, Cebral J. Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Stud. Health Technol. Inform.113, 412–442 (2005).
  • Masaryk AM, Frayne R, Unal O, Krupinski E, Strother CM. In vitro and in vivo comparison of three MR measurement methods for calculating vascular shear stress in the internal carotid artery. Am. J. Neuroradiol.20(2), 237–245 (1999).
  • Oyre S, Ringgaard S, Kozerke S et al. Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. J. Am. Coll. Cardiol.32(1), 128–134 (1998).
  • Wu SP, Ringgaard S, Pedersen EM. Three-dimensional phase contrast velocity mapping acquisition improves wall shear stress estimation in vivo.Magn. Reson. Imaging22(3), 345–351 (2004).
  • Wu SP, Ringgaard S, Oyre S et al. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. J. Magn. Reson. Imaging.19(2), 188–193 (2004).
  • Stokholm R, Oyre S, Ringgaard S et al. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques. Eur. J. Vasc. Endovasc. Surg.20(5), 427–433 (2000).
  • Oyre S, Pedersen EM, Ringgaard S, Boesiger P, Paaske WP. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur. J. Vasc. Endovasc. Surg.13(3), 263–271 (1997).
  • Pedersen EM, Oyre S, Agerbaek M et al. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo.Eur. J. Vasc. Endovasc. Surg.18(4), 328–333 (1999).
  • Cheng CP, Herfkens RJ, Taylor CA. Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol.284(4), H1161–H1167 (2003).
  • Taylor CA, Cheng CP, Espinosa LA et al.In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann. Biomed. Eng.30(3), 402–408 (2002).
  • Cheng CP, Herfkens RJ, Taylor CA. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. J. Vasc. Surg.37(1), 118–123 (2003).
  • Cheng CP, Herfkens RJ, Taylor CA. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis168(2), 323–331 (2003).
  • Wentzel JJ, Corti R, Fayad ZA et al. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J. Am. Coll. Cardiol.45(6), 846–854 (2005).
  • Silber HA, Ouyang P, Bluemke DA et al. Why is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol.288(2), H822–H828 (2005).
  • Amann-Vesti BR, Kozerke S, Krieger E, Boesiger P, Koppensteiner R. High wall shear stress measured by magnetic resonance is a predictor of restenosis in the femoral-artery after balloon angioplasty. Int. Angiol.23(3), 270–275 (2004).
  • LaBarbera M. Principles of design of fluid transport systems in zoology. Science249(4972), 992–1000 (1990).
  • Pries AR, Secomb TW, Gaehtgens P. Design principles of vascular beds. Circ. Res.77(5), 1017–1023 (1995).
  • Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW. Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler. Thromb.11(6), 1844–1852 (1991).
  • Busse R, Fleming I. Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. J. Vasc. Res.35(2), 73–84 (1998).
  • Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol.239(1), H14–H21 (1980).
  • Melkumyants AM, Balashov SA, Khayutin VM. Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc. Res.23(9), 741–747 (1989).
  • Melkumyants AM, Balashov SA, Veselova ES, Khayutin VM. Continuous control of the lumen of feline conduit arteries by blood flow rate. Cardiovasc. Res.21(12), 863–870 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.