81
Views
16
CrossRef citations to date
0
Altmetric
Review

Diagnosis and treatment of coronary vulnerable plaques

, , , &
Pages 209-222 | Published online: 10 Jan 2014

References

  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.20, 1262–1275 (2000).
  • Schaar JA, Muller JE, Falk E et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June17th to 18th 2003, Santorini, Greece. Eur. Heart J.25, 1077–1082 (2004).
  • Serruys PW, Garcia-Garcia HM, Regar E. From postmortem characterization to the in vivo detection of thin-capped fibroatheromas: the missing link toward percutaneous treatment: what if Diogenes would have found what he was looking for? J. Am. Coll. Cardiol.50, 950–952 (2007).
  • Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N. Engl. J. Med.343, 915–922 (2000).
  • Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation114, 2390–2411 (2006).
  • Kolodgie FD, Burke AP, Farb A et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol.16, 285–292 (2001).
  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med.336, 1276–1282 (1997).
  • Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation90, 775–778 (1994).
  • Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med.340, 115–126 (1999).
  • Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res.71, 850–858 (1992).
  • Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet2, 941–944 (1989).
  • Cheruvu PK, Finn AV, Gardner C et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J. Am. Coll. Cardiol.50, 940–949 (2007).
  • Kolodgie FD, Virmani R, Burke AP et al. Pathologic assessment of the vulnerable human coronary plaque. Heart90, 1385–1391 (2004).
  • Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J. Interv. Cardiol.15, 439–446 (2002).
  • Farb A, Burke AP, Tang AL et al. Coronary plaque erosion without rupture into a lipid core : a frequent cause of coronary thrombosis in sudden coronary death. Circulation93, 1354–1363 (1996).
  • Arbustini E, Dal Bello B, Morbini P et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart82, 269–272 (1999).
  • Kolodgie FD, Gold HK, Burke AP et al. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med.349, 2316–2325 (2003).
  • Ambrose JA, Tannenbaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol.12, 56–62 (1988).
  • Little WC, Constantinescu M, Applegate RJ et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation78, 1157–1166 (1988).
  • Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation92, 2333–2342 (1995).
  • Mizuno K, Satomura K, Miyamoto A et al. Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N. Engl. J. Med.326, 287–291 (1992).
  • Sherman CT, Litvack F, Grundfest W et al. Coronary angioscopy in patients with unstable angina pectoris. N. Engl. J. Med.315, 913–919 (1986).
  • de Feyter PJ, Ozaki Y, Baptista J et al. Ischemia-related lesion characteristics in patients with stable or unstable angina: a study with intracoronary angioscopy and ultrasound. Circulation92, 1408–1413 (1995).
  • Kubo T, Imanishi T, Takarada S et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol.50, 933–939 (2007).
  • Thieme T, Wernecke KD, Meyer R et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J. Am. Coll. Cardiol.28, 1–6 (1996).
  • Ueda Y, Ohtani T, Shimizu M, Hirayama A, Kodama K. Assessment of plaque vulnerability by angioscopic classification of plaque color. Am. Heart J.148, 333–335 (2004).
  • Takano M, Mizuno K, Okamatsu K, Yokoyama S, Ohba T, Sakai S. Mechanical and structural characteristics of vulnerable plaques: analysis by coronary angioscopy and intravascular ultrasound. J. Am. Coll. Cardiol.38, 99–104 (2001).
  • Smits PC, Pasterkamp G, de Jaegere PP, de Feyter PJ, Borst C. Angioscopic complex lesions are predominantly compensatory enlarged: an angioscopy and intracoronary ultrasound study. Cardiovasc. Res.41, 458–464 (1999).
  • Nakamura M, Nishikawa H, Mukai S et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J. Am. Coll. Cardiol.37, 63–69 (2001).
  • Maehara A, Mintz GS, Bui AB et al. Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J. Am. Coll. Cardiol.40, 904–910 (2002).
  • Kotani J, Mintz GS, Castagna MT et al. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation107, 2889–2893 (2003).
  • Aoki J, Abizaid AC, Serruys PW et al. Evaluation of four-year coronary artery response after sirolimus-eluting stent implantation using serial quantitative intravascular ultrasound and computer-assisted grayscale value analysis for plaque composition in event-free patients. J. Am. Coll. Cardiol.46, 1670–1676 (2005).
  • Di Mario C, The SH, Madretsma S et al. Detection and characterization of vascular lesions by intravascular ultrasound: an in vitro study correlated with histology. J. Am. Soc. Echocardiogr.5, 135–146 (1992).
  • Potkin BN, Bartorelli AL, Gessert JM et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation81, 1575–1585 (1990).
  • Rasheed Q, Dhawale PJ, Anderson J, Hodgson JM. Intracoronary ultrasound-defined plaque composition: computer-aided plaque characterization and correlation with histologic samples obtained during directional coronary atherectomy. Am. Heart J.129, 631–637 (1995).
  • Yamagishi M, Terashima M, Awano K et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J. Am. Coll. Cardiol.35, 106–111 (2000).
  • Carlier S, Kakadiaris IA, Dib N et al. Vasa vasorum imaging: a new window to the clinical detection of vulnerable atherosclerotic plaques. Curr. Atheroscler. Rep.7, 164–169 (2005).
  • Jeremias A, Kolz ML, Ikonen TS et al. Feasibility of in vivo intravascular ultrasound tissue characterization in the detection of early vascular transplant rejection. Circulation100, 2127–2130 (1999).
  • Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation106, 2200–2206 (2002).
  • Nasu K, Tsuchikane E, Katoh O et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J. Am. Coll. Cardiol.47, 2405–2412 (2006).
  • Rodriguez-Granillo GA, Aoki J, Ong AT et al. Methodological considerations and approach to cross-technique comparisons using in vivo coronary plaque characterization based on intravascular ultrasound radiofrequency data analysis: insights from the Integrated Biomarker and Imaging Study (IBIS). Int. J. Cardiovasc. Intervent.7, 52–58 (2005).
  • Kaaresen K. Deconvolution of sparse spike trains by iterated window maximization. IEEE Trans. Signal Process45, 1173–1183 (1997).
  • Kaaresen K, Bolviken E. Blind deconvolution of ultrasonic traces accounting for pulse variance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control46, 564–573 (1999).
  • Rodriguez-Granillo GA, Garcia-Garcia HM, Mc Fadden EP et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J. Am. Coll. Cardiol.46, 2038–2042 (2005).
  • Wang JC, Normand SL, Mauri L, Kuntz RE. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation110, 278–284 (2004).
  • Rioufol G, Finet G, Ginon I et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation106, 804–808 (2002).
  • Lowder ML, Li S, Carnell PH, Vito RP. Correction of distortion of histologic sections of arteries. J. Biomech.40(2), 445–450 (2007).
  • Boyde A, Jones SJ, Tamarin A. Dimensional changes during specimen preparation for scanning electron microscopy. Scan. Electron Microsc.1, 507–518 (1977).
  • Fishbein MC, Siegel RJ. How big are coronary atherosclerotic plaques that rupture? Circulation94, 2662–2666 (1996).
  • Siegel RJ, Swan K, Edwalds G, Fishbein MC. Limitations of postmortem assessment of human coronary artery size and luminal narrowing: differential effects of tissue fixation and processing on vessels with different degrees of atherosclerosis. J. Am. Coll. Cardiol.5, 342–346 (1985).
  • Nair A , Calvetti D, DG V. Regularized autoregressive analysis of intravascular ultrasound data: improvement in spatial accuracy of plaque tissue maps. IEEE Trans. Ultrason. Ferroelectr. Freq. Control51, 420–431 (2004).
  • Garcia-Garcia HM, Goedhart D, Schuurbiers JC et al. Virtual histology and remodeling index allow in vivo identification of allegedly high risk coronary plaques in patients with acute coronary syndromes: a three vessel intravascular ultrasound radiofrequency data analysis. Eurointervention2, 338–344 (2006).
  • Schaar JA, de Korte CL, Mastik F et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation108, 2636–2641 (2003).
  • Schaar JA, Regar E, Mastik F et al. Incidence of high-strain patterns in human coronary arteries: assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation109, 2716–2719 (2004).
  • de Korte CL, Carlier SG, Mastik F et al. Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. Eur. Heart J.23, 405–413 (2002).
  • van Mieghem CAG, Bruining N, Schaar JA et al. Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology. Int. J. Cardiovasc. Imaging21, 425–441 (2005).
  • Van Mieghem CA, McFadden EP, de Feyter PJ et al. Noninvasive detection of subclinical coronary atherosclerosis coupled with assessment of changes in plaque characteristics using novel invasive imaging modalities: the Integrated Biomarker and Imaging Study (IBIS). J. Am. Coll. Cardiol.47, 1134–1142 (2006).
  • Regar E vLA, Serruys PW. Optical Coherence Tomography in Cardiovascular Research. Informa Healthcare, London, UK (2007).
  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science254, 1178–1181 (1991).
  • Brezinski ME, Tearney GJ, Bouma BE et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. Am. J. Cardiol.77, 92–93 (1996).
  • Regar E, Schaar JA, Mont E, Virmani R, Serruys PW. Optical coherence tomography. Cardiovasc. Radiat. Med.4, 198–204 (2003).
  • Jang IK, Bouma BE, Kang DH et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol.39, 604–609 (2002).
  • Patwari P, Weissman NJ, Boppart SA et al. Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am. J. Cardiol.85, 641–644 (2000).
  • Yabushita H, Bouma BE, Houser SL et al. Characterization of Human Atherosclerosis by Optical Coherence Tomography. Circulation106, 1640–1645 (2002).
  • Brezinski ME, Tearney GJ, Weissman NJ et al. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart77, 397–403 (1997).
  • Kawasaki M, Bouma BE, Bressner J et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J. Am. Coll. Cardiol.48, 81–88 (2006).
  • Manfrini O, Mont E, Leone O et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am. J. Cardiol.98, 156–159 (2006).
  • Jang IK, Tearney GJ, MacNeill B et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation111, 1551–1555 (2005).
  • Tearney GJ, Yabushita H, Houser SL et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation107, 113–119 (2003).
  • MacNeill BD, Jang IK, Bouma BE et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J. Am. Coll. Cardiol.44, 972–979 (2004).
  • Fuster V. Human lesion studies. Ann. NY Acad. Sci.811, 207–224, discussion 224–225 (1997).
  • Casscells W, Hathorn B, David M et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet347, 1447–1451 (1996).
  • Stefanadis C, Diamantopoulos L, Vlachopoulos C et al. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation99, 1965–1971 (1999).
  • Stefanadis C, Toutouzas K, Tsiamis E et al. Increased local temperature in human coronary atherosclerotic plaques: an independent predictor of clinical outcome in patients undergoing a percutaneous coronary intervention. J. Am. Coll. Cardiol.37, 1277–1283 (2001).
  • Toutouzas K, Drakopoulou M, Mitropoulos J et al. Elevated plaque temperature in non-culprit de novo atheromatous lesions of patients with acute coronary syndromes. J. Am. Coll. Cardiol.47, 301–306 (2006).
  • Stefanadis C, Toutouzas K, Tsiamis E et al. Thermal heterogeneity in stable human coronary atherosclerotic plaques is underestimated in vivo: the ‘cooling effect’ of blood flow. J. Am. Coll. Cardiol.41, 403–408 (2003).
  • Diamantopoulos L, Liu X, De Scheerder I et al. The effect of reduced blood-flow on the coronary wall temperature: are significant lesions suitable for intravascular thermography? 10.1016/S0195–668X(03)00440–00448. Eur. Heart J.24, 1788–1795 (2003).
  • ten Have AG, Gijsen FJ, Wentzel JJ, Slager CJ, van der Steen AF. Temperature distribution in atherosclerotic coronary arteries: influence of plaque geometry and flow (a numerical study). Phys. Med. Biol.49, 4447–4462 (2004).
  • Verheye S, De Meyer GRY, Krams R et al. Intravascular thermography: Immediate functional and morphological vascular findings. Eur. Heart J.25, 158–165 (2004).
  • Correia LC, Atalar E, Kelemen MD et al. Intravascular magnetic resonance imaging of aortic atherosclerotic plaque composition. Arterioscler. Thromb. Vasc. Biol.17, 3626–3632 (1997).
  • Larose E, Yeghiazarians Y, Libby P et al. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation112, 2324–2331 (2005).
  • Blank A, Alexandrowicz G, Muchnik L et al. Miniature self-contained intravascular magnetic resonance (IVMI) probe for clinical applications. Magn. Reson. Med.54, 105–112 (2005).
  • Regar E HB, Grube E, Halon D, Wilensky RL, Virmani R, Schneiderman J, Sax S, Friedmann H, Serruys PW, Wijns W. First-in-man application of a miniature self-contained intracoronary magnetic resonance probe. A multi-centre safety and feasibility trial. Eurointervention2, 77–83 (2006).
  • Schneiderman J, Wilensky RL, Weiss A et al. Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and In situ coronary arteries. J. Am. Coll. Cardiol.45, 1961–1969 (2005).
  • Quick HH, Ladd ME, Hilfiker PR, Paul GG, Ha SW, Debatin JF. Autoperfused balloon catheter for intravascular MR imaging. J. Magn. Reson. Imaging9, 428–434 (1999).
  • Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ. Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation108, 605–609 (2003).
  • Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by In Vivo magnetic resonance imaging. Circulation107, 2453–2458 (2003).
  • Porto I, Selvanayagam J, Ashar V, Neubauer S, Banning AP. Safety of magnetic resonance imaging one to three days after bare metal and drug-eluting stent implantation. Am. J. Cardiol.96, 366–368 (2005).
  • Moreno PR, Muller JE. Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr. Opin. Cardiol.17, 638–647 (2002).
  • Brennan JF 3rd, Romer TJ, Lees RS, Tercyak AM, Kramer JR Jr, Feld MS. Determination of human coronary artery composition by Raman spectroscopy. Circulation96, 99–105 (1997).
  • Baraga JJ, Feld MS, Rava RP. In situ optical histochemistry of human artery using near infrared fourier transform raman spectroscopy. Proc. Natl Acad. Sci. USA89, 3473–3477 (1992).
  • Romer TJ, Brennan JF, Fitzmaurice M et al. Histopathology of human coronary atherosclerosis by quantifying its chemical composition with raman spectroscopy. Circulation97, 878–885 (1998).
  • Romer TJ, Brennan JF, Puppels GJ et al. Intravascular ultrasound combined with raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler. Thromb. Vasc. Biol.20, 478–483 (2000).
  • van de Poll SWE, Kastelijn K, Schut TCB et al. On-line detection of cholesterol and calcification by catheter based Raman spectroscopy in human atherosclerotic plaque ex vivo. Heart89, 1078–1082 (2003).
  • Wang J, Geng YJ, Guo B et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J. Am. Coll. Cardiol.39, 1305–1313 (2002).
  • Marcu L, Fishbein MC, Maarek JM, Grundfest WS. Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arterioscler. Thromb. Vasc. Biol.21, 1244–1250 (2001).
  • Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O'Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation105, 923–927 (2002).
  • Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J. Am. Coll. Cardiol.47, C92–C96 (2006).
  • Waxman S, Ishibashi F, Caplan JD. Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques. J. Nucl. Cardiol.14, 719–728 (2007).
  • Aoki J, Ong AT, Rodriguez Granillo GA et al. ‘Full metal jacket’ (stented length > or =64 mm) using drug-eluting stents for de novo coronary artery lesions. Am. Heart J.150, 994–999 (2005).
  • Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging25, 667–680 (2007).
  • Serruys PW, Hoye A, Grollier G, Colombo A, Symons J, Mudra H. A European multi-center trial investigating the anti-restenotic effect of intravascular sonotherapy after stenting of de novo lesions (EUROSPAH: European Sonotherapy Prevention of Arterial Hyperplasia). Int. J. Cardiovasc. Intervent.6, 53–60 (2004).
  • Kandzari DE, Chu A, Brodie BR et al. Feasibility of endovascular cooling as an adjunct to primary percutaneous coronary intervention (results of the LOWTEMP pilot study). Am. J. Cardiol.93, 636–639 (2004).
  • Chou TM, Woodburn KW, Cheong WF et al. Photodynamic therapy: applications in atherosclerotic vascular disease with motexafin lutetium. Catheter Cardiovasc Interv 57, 387–394 (2002).
  • Finn AV, Nakazawa G, Joner M et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler. Thromb. Vasc. Biol.27, 1500–1510 (2007).
  • Slager CJ, Wentzel JJ, Gijsen FJ et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med.2, 401–407 (2005).
  • Slager CJ, Wentzel JJ, Gijsen FJ et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med.2, 456–464 (2005).
  • Moreno PR, Kilpatrick D, Purushothaman KR, Coleman L, O’Connor WN. Stenting vulnerable plaques improves fibrous cap thickness and reduces lipid content: understanding alternatives for plaque stabilization. TCT(2002).
  • Kaluza G, Alviar CL, Tellez A, Kolodgie F, Virmani R, Granada JF. First in-vivo experience with a novel low-pressure self-expanding intraarterial shield: a one-month study comparing to balloon expandable stents in porcine coronary arteries. TCT(2007).
  • Aoki J, Serruys PW, van Beusekom H et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J. Am. Coll. Cardiol.45, 1574–1579 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.