8,331
Views
383
CrossRef citations to date
0
Altmetric
Review

Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity

, , , , , , & show all
Pages 343-368 | Published online: 10 Jan 2014

References

  • Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? Future Lipidol.1(4), 389–420 (2006).
  • Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA291(23), 2847–2850 (2004).
  • Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999–2000. JAMA288(14), 1723–1727 (2002).
  • Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA298(17), 2028–2037 (2007).
  • Bays H, Chapman R. BMI and Frequency of Diabetes, Hypertension, and Dyslipidemia: Comparison of SHIELD and NHANES Data. Presented at the North American Association for the Study of Obesity (NAASO) 2005 Annual Scientific Meeting, Vancouver, British Columbia, October 15–19, 2005.
  • Bays HE, Chapman RH, Grandy S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int. J. Clin. Pract.61(5), 737–747 (2007).
  • Bays H, Dujovne CA. Adiposopathy is a more rational treatment target for metabolic disease than obesity alone. Curr. Atheroscler. Rep.8(2), 144–156 (2006).
  • Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world – a growing challenge. N. Engl. J. Med.356(3), 213–215 (2007).
  • Bays HE, Rodbard RW, Schorr AB, González-Campoy JM. Adiposopathy: treating pathogenic adipose tissue to reduce cardiovascular disease risk. Curr. Treat. Options Cardiovasc. Med.9(4), 259–271 (2007).
  • Schulz LO, Bennett PH, Ravussin E et al. Effects of traditional and western environments on prevalence of Type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care29(8), 1866–1871 (2006).
  • Nelson RG, Sievers ML, Knowler WC et al. Low incidence of fatal coronary heart disease in Pima Indians despite high prevalence of non-insulin-dependent diabetes. Circulation81(3), 987–995 (1990).
  • Ingelfinger JA, Bennett PH, Liebow IM, Miller M. Coronary heart disease in the Pima Indians. Electrocardiographic findings and postmortem evidence of myocardial infarction in a population with a high prevalence of diabetes mellitus. Diabetes25(7), 561–565 (1976).
  • Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia38(10), 1213–1217 (1995).
  • Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance. Diabetologia43(12), 1498–1506 (2000).
  • Abate N, Chandalia M, Snell PG, Grundy SM. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. J. Clin. Endocrinol. Metab.89(6), 2750–2755 (2004).
  • Chandalia M, Abate N, Garg A, Stray-Gundersen J, Grundy SM. Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. J. Clin. Endocrinol. Metab.84(7), 2329–2335 (1999).
  • Smith JD, Al-Amri M, Sniderman AD, Cianflone K. Leptin and adiponectin in relation to body fat percentage, waist to hip ratio and the apoB/apoA1 ratio in Asian Indian and Caucasian men and women. Nutr. Metab. (Lond.)3(1), 18 (2006).
  • Zhu S, Heymsfield SB, Toyoshima H, Wang Z, Pietrobelli A, Heshka S. Race-ethnicity-specific waist circumference cutoffs for identifying cardiovascular disease risk factors. Am. J. Clin. Nutr.81(2), 409–415 (2005).
  • Chandalia M, Cabo-Chan AV Jr, Devaraj S, Jialal I, Grundy SM, Abate N. Elevated plasma high-sensitivity C-reactive protein concentrations in Asian Indians living in the United States. J. Clin. Endocrinol. Metab.88(8), 3773–3776 (2003).
  • Smith J, Al-Amri M, Dorairaj P, Sniderman A. The adipocyte life cycle hypothesis. Clin. Sci. (Lond.)110(1), 1–9 (2006).
  • Sniderman AD, Bhopal R, Prabhakaran D, Sarrafzadegan N, Tchernof A. Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int. J. Epidemiol.36(1), 220–225 (2007).
  • Chuang LM, Hsiung CA, Chen YD et al. Sibling-based association study of the PPARγ2 Pro12Ala polymorphism and metabolic variables in Chinese and Japanese hypertension families: a SAPPHIRe study. Stanford Asian-Pacific Program in Hypertension and Insulin Resistance. J. Mol. Med.79(11), 656–664 (2001).
  • WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet363(9403), 157–163 (2004).
  • Calle C, Carranza MC, Simon MA, Torres A, Mayor P. Decreased insulin binding and antilipolytic response in adipocytes from patients with Cushing’s syndrome. Biosci. Rep.7(9), 713–719 (1987).
  • Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J. Clin. Endocrinol. Metab.67(6), 1122–1128 (1988).
  • Pedersen SB. Studies on receptors and actions of steroid hormones in adipose tissue. Dan. Med. Bull.52(4), 258 (2005).
  • Tomlinson JW, Walker EA, Bujalska IJ et al. 11β-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr. Rev.25(5), 831–866 (2004).
  • Darmon P, Dadoun F, Boullu-Ciocca S, Grino M, Alessi MC, Dutour A. Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity. Am. J. Physiol. Endocrinol. Metab.291(5), E995–E1002 (2006).
  • Wood IS, Trayhurn P. Adipokines and the signaling role of adipose tissue in inflammation and obesity. Future Lipidol.1(1), 81–89 (2006).
  • Smas CM, Sul HS. Control of adipocyte differentiation. Biochem. J.309 (Pt 3), 697–710 (1995).
  • Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of Type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab.89(2), 463–478 (2004).
  • Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J. Clin. Endocrinol. Metab.87 (5), 2395 (2002).
  • Gavrilova O, Marcus-Samuels B, Graham D et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest.105(3), 271–278 (2000).
  • Nadler ST, Attie AD. Please pass the chips: genomic insights into obesity and diabetes. J. Nutr.131(8), 2078–2081 (2001).
  • Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and Type II diabetes mellitus. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 4), S12–S21 (2004).
  • Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and Type 2 diabetes mellitus. Ann. NY Acad. Sci.967, 363–378 (2002).
  • Van, Harmelen V, Skurk T, Rohrig K et al. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int. J. Obes. Relat. Metab. Disord.27(8), 889–895 (2003).
  • Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am. J. Physiol.275(6 Pt 2), R1898–R1908 (1998).
  • Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes. Rev.2(4), 239–254 (2001).
  • Roche AF. The adipocyte-number hypothesis. Child Dev.52(1), 31–43 (1981).
  • Zhu X, He Q, Lin, Z. Human preadipocyte culture and the establishment of hyperplasia and hypertrophy model. Zhonghua Zheng. Xing.Shao Shang Wai Ke. Za Zhi.15(3), 199–201 (1999).
  • Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E. Decreased expression of adipogenic genes in obese subjects with Type 2 diabetes. Obesity14(9), 1543–1552 (2006).
  • Gregoire FM. Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. (Maywood)226(11), 997–1002 (2001).
  • Haller H, Leonhardt W, Hanefeld M, Julius U. Relationship between adipocyte hypertrophy and metabolic disturbances. Endokrinologie74(1), 63–72 (1979).
  • Smith U. Effect of cell size on lipid synthesis by human adipose tissue in vitro.J. Lipid Res.12(1), 65–70 (1971).
  • Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol.16, 145–171 (2000).
  • Bays H, Blonde L, Rosenson R. Adiposopathy: how do diet, exercise, weight loss and drug therapies improve metabolic disease? Expert Rev. Cardiovasc Ther.4(6), 871–895 (2006).
  • Ailhaud G. Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. CR Biol.329(8), 570–577 (2006).
  • Hissin PJ, Foley JE, Wardzala LJ et al. Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. J. Clin. Invest.70(4), 780–790 (1982).
  • Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev.78(3), 783–809 (1998).
  • Nadler ST, Stoehr JP, Schueler KL, Tanimoto G, Yandell BS, Attie AD. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc. Natl Acad. Sci. USA97(21), 11371–11376 (2000).
  • Danforth E Jr. Failure of adipocyte differentiation causes Type II diabetes mellitus? Nat. Genet.26(1), 13(2000).
  • Salans LB, Bray GA, Cushman SW et al. Glucose metabolism and the response to insulin by human adipose tissue in spontaneous and experimental obesity. Effects of dietary composition and adipose cell size. J. Clin. Invest.53(3), 848–856 (1974).
  • Bray GA, Glennon JA, Salans LB, Horton ES, Danforth E Jr, Sims EA. Spontaneous and experimental human obesity: effects of diet and adipose cell size on lipolysis and lipogenesis. Metabolism26(7), 739–747 (1977).
  • Julius U, Leonhardt W, Schneider H et al. Basal and stimulated hyperinsulinemia in obesity: relationship to adipose-cell size. Endokrinologie73(2), 214–220 (1979).
  • Le Lay S, Krief S, Farnier C et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J. Biol. Chem.276(20), 16904–16910 (2001).
  • Leonhardt W, Haller H, Hanefeld M. The adipocyte volume in human adipose tissue: II. Observations in diabetes mellitus, primary hyperlipoproteinemia and weight reduction. Int. J. Obes.2(4), 429–439 (1978).
  • Pausova Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr. Opin. Nephrol. Hypertens.15(2), 173–178 (2006).
  • Jernas M, Palming J, Sjoholm K et al. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J.20(9), 1540–1542 (2006).
  • Schneider BS, Faust IM, Hemmes R, Hirsch J. Effects of altered adipose tissue morphology on plasma insulin levels in the rat. Am. J. Physiol.240(4), E358–E362 (1981).
  • Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr.130(12), 3116S–3121S (2000).
  • Hausman GJ, Wright JT, Richardson RL. The influence of extracellular matrix substrata on preadipocyte development in serum-free cultures of stromal-vascular cells. J. Anim. Sci.74(9), 2117–2128 (1996).
  • Rundhaug JE. Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med.9(2), 267–285 (2005).
  • Lilla J, Stickens D, Werb Z. Metalloproteases and adipogenesis: a weighty subject. Am. J. Pathol.160(5), 1551–1554 (2002).
  • Kim KH, Song MJ, Chung J, Park H, Kim JB. Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem. Biophys. Res. Commun.333(4), 1178–1184 (2005).
  • Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans.33(Pt 5), 1078–1081 (2005).
  • Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab.293(4), E1118–E1128 (2007).
  • Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch.455(3), 479–492 (2007).
  • Gregg EW, Cheng YJ, Cadwell BL et al. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA293(15), 1868–1874 (2005).
  • St-Onge MP, Janssen I, Heymsfield SB. Metabolic syndrome in normal-weight Americans: new definition of the metabolically obese, normal-weight individual. Diabetes Care27(9), 2222–2228 (2004).
  • Ailhaud G, Fukamizu A, Massiera F, Negrel R, Saint-Marc P, Teboul M. Angiotensinogen, angiotensin II and adipose tissue development. Int. J. Obes. Relat. Metab. Disord.24(Suppl. 4), S33–S35 (2000).
  • Engeli S. Role of the renin–angiotensin –aldosterone system in the metabolic syndrome. Contrib. Nephrol.151, 122–134 (2006).
  • Engeli S, Schling P, Gorzelniak K et al. The adipose-tissue renin–angiotensin –aldosterone system: role in the metabolic syndrome? Int. J. Biochem. Cell Biol.35(6), 807–825 (2003).
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab.89(6), 2548–2556 (2004).
  • Strazzullo P, Galletti F. Impact of the renin–angiotensin system on lipid and carbohydrate metabolism. Curr. Opin. Nephrol. Hypertens.13(3), 325–332 (2004).
  • Saint-Marc P, Kozak LP, Ailhaud G, Darimont C, Negrel R. Angiotensin II as a trophic factor of white adipose tissue: stimulation of adipose cell formation. Endocrinology142(1), 487–492 (2001).
  • Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes51(6), 1699–1707 (2002).
  • Simon MF, Daviaud D, Pradere JP et al. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor γ2. J. Biol. Chem.280(15), 14656–14662 (2005).
  • Ferry G, Tellier E, Try A et al. Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J. Biol. Chem.278(20), 18162–18169 (2003).
  • Zhu XH, He QL, Lin ZH. Effects of catecholamines on human preadipocyte proliferation and differentiation. Zhonghua Zheng. Xing.Wai Ke. Za Zhi.19(4), 282–284 (2003).
  • Gregoire F, Genart C, Hauser N, Remacle C. Glucocorticoids induce a drastic inhibition of proliferation and stimulate differentiation of adult rat fat cell precursors. Exp. Cell Res.196(2), 270–278 (1991).
  • Adachi H, Kurachi H, Homma H et al. Epidermal growth factor promotes adipogenesis of 3T3-L1 cell in vitro.Endocrinology135(5), 1824–1830 (1994).
  • Abuissa H, Jones PG, Marso SP, O’keefe JH Jr. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of Type 2 diabetes a meta-analysis of randomized clinical trials. J. Am. Coll. Cardiol.46(5), 821–826 (2005).
  • Koh KK, Quon MJ, Han SH et al. Vascular and metabolic effects of combined therapy with ramipril and simvastatin in patients with Type 2 diabetes. Hypertension45(6), 1088–1093 (2005).
  • Benson SC, Pershadsingh HA, Ho CI et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgγ-modulating activity. Hypertension43(5), 993–1002 (2004).
  • Prasad A, Quyyumi AA. Renin–angiotensin system and angiotensin receptor blockers in the metabolic syndrome. Circulation110(11), 1507–1512 (2004).
  • Ingelfinger JR, Solomon CG. Angiotensin-converting-enzyme inhibitors for impaired glucose tolerance – is there still hope? N. Engl. J. Med.355(15), 1608–1610 (2006).
  • Yvan-Charvet L, Even P, Bloch-Faure M et al. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes54(4), 991–999 (2005).
  • Beltowski J. Role of leptin in blood pressure regulation and arterial hypertension. J. Hypertens.24(5), 789–801 (2006).
  • Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia43(5), 533–549 (2000).
  • Lebovitz HE, Banerji MA. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care28(9), 2322–2325 (2005).
  • Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J. Clin. Endocrinol. Metab.89(6), 2569–2575 (2004).
  • Sims EA. Are there persons who are obese, but metabolically healthy? Metabolism50(12), 1499–1504 (2001).
  • Tchkonia T, Giorgadze N, Pirtskhalava T et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol.282(5), R1286–R1296 (2002).
  • Tchkonia T, Giorgadze N, Pirtskhalava T et al. Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes55(9), 2571–2578 (2006).
  • Mohamed-Ali V, Goodrick S, Rawesh A et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo.J. Clin. Endocrinol. Metab.82(12), 4196–4200 (1997).
  • Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab. Res. Rev.21(1), 3–14 (2005).
  • Reynisdottir S, Dauzats M, Thorne A, Langin D. Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J. Clin. Endocrinol. Metab.82(12), 4162–4166 (1997).
  • Arner P. Regional differences in protein production by human adipose tissue. Biochem. Soc. Trans.29(Pt 2), 72–75 (2001).
  • Bjorntorp P. The regulation of adipose tissue distribution in humans. Int. J. Obes. Relat. Metab. Disord.20(4), 291–302 (1996).
  • Arner P. Regional adipocity in man. J. Endocrinol.155(2), 191–192 (1997).
  • Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet349(9060), 1210–1213 (1997).
  • Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of Type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J. Clin. Endocrinol. Metab.89(6), 2601–2607 (2004).
  • Catalano KJ, Bergman RN, Ader M. Increased susceptibility to insulin resistance associated with abdominal obesity in aging rats. Obes. Res.13(1), 11–20 (2005).
  • Despres JP. Intra-abdominal obesity: an untreated risk factor for Type 2 diabetes and cardiovascular disease. J. Endocrinol. Invest.29(3 Suppl.), 77–82 (2006).
  • Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am. J. Clin. Nutr.79(3), 379–384 (2004).
  • Bergman RN, Kim SP, Catalano KJ et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity14(Suppl. 1), 16S–19S (2006).
  • Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab.89(6), 2595–2600 (2004).
  • Gomez-Ambrosi J, Catalan V, diez-Caballero A et al. Gene expression profile of omental adipose tissue in human obesity. FASEB J.18(1), 215–217 (2004).
  • Couillard C, Bergeron N, Prud’homme D et al. Postprandial triglyceride response in visceral obesity in men. Diabetes47(6), 953–960 (1998).
  • Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes45(12), 1684–1693 (1996).
  • McCarty MF. A paradox resolved: the postprandial model of insulin resistance explains why gynoid adiposity appears to be protective. Med. Hypotheses61(2), 173–176 (2003).
  • Tchkonia T, Lenburg M, Thomou T et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab.292(1), E298–E307 (2007).
  • Lebovitz HE. The relationship of obesity to the metabolic syndrome. Int. J. Clin. Pract. Suppl.134, 18–27 (2003).
  • Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim. Biophys. Acta1500(1), 88–96 (2000).
  • Wang Y, Sullivan S, Trujillo M et al. Perilipin expression in human adipose tissues: effects of severe obesity, gender, and depot. Obes. Res.11(8), 930–936 (2003).
  • Goodpaster BH, Krishnaswami S, Harris TB et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch. Intern. Med.165(7), 777–783 (2005).
  • Rexrode KM, Buring JE, Manson JE. Abdominal and total adiposity and risk of coronary heart disease in men. Int. J. Obes. Relat. Metab. Disord.25(7), 1047–1056 (2001).
  • Kitabchi AE, Buffington CK. Body fat distrubution, hyperandrogenicity and health risk. Semin. Reprod. Endocrinol.12(1), 6–14 (1994).
  • Bjorntorp P. Adipose tissue distribution and function. Int. J. Obes.15(Suppl. 2), 67–81 (1991).
  • Rebuffe-Scrive M, Andersson B, Olbe L, Bjorntorp P. Metabolism of adipose tissue in intraabdominal depots of nonobese men and women. Metabolism38(5), 453–458 (1989).
  • Rexrode KM, Carey VJ, Hennekens CH et al. Abdominal adiposity and coronary heart disease in women. JAMA280(21), 1843–1848 (1998).
  • Vague J. La differenciation sexuelle, facteur determinant des formes de l’obesite. Presse Med.30, 339–340 (1947).
  • Krotkiewski M, Blohme B, Lindholm N, Bjorntorp P. The effects of adrenal corticosteroids on regional adipocyte size in man. J. Clin. Endocrinol. Metab.42(1), 91–97 (1976).
  • Kirschner MA, Samojlik E, Drejka M, Szmal E, Schneider G, Ertel N. Androgen-estrogen metabolism in women with upper body versus lower body obesity. J. Clin. Endocrinol. Metab.70(2), 473–479 (1990).
  • Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt – a major factor in the genesis of morbid obesity. Med. Hypotheses.52(1), 49–51 (1999).
  • Tan GD, Goossens GH, Humphreys SM, Vidal H, Karpe F. Upper and lower body adipose tissue function: a direct comparison of fat mobilization in humans. Obes. Res.12(1), 114–118 (2004).
  • Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM. Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes. Res.5(2), 93–99 (1997).
  • Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes46(10), 1579–1585 (1997).
  • Smith SR, Lovejoy JC, Greenway F et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism50(4), 425–435 (2001).
  • Imbeault P, Lemieux S, Prud’homme D et al. Relationship of visceral adipose tissue to metabolic risk factors for coronary heart disease: is there a contribution of subcutaneous fat cell hypertrophy? Metabolism48(3), 355–362 (1999).
  • Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev.21(6), 697–738 (2000).
  • Baker AR, Silva NF, Quinn DW et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol.5, 1 (2006).
  • Higuchi ML, Gutierrez PS, Bezerra HG et al. Comparison between adventitial and intimal inflammation of ruptured and nonruptured atherosclerotic plaques in human coronary arteries. Arq. Bras. Cardiol.79(1), 20–24 (2002).
  • Mazurek T, Zhang L, Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation108(20), 2460–2466 (2003).
  • Torriani M, Grinspoon S. Racial differences in fat distribution: the importance of intermuscular fat. Am. J. Clin. Nutr.81(4), 731–732 (2005).
  • Engeli S. Is there a pathophysiological role for perivascular adipocytes? Am. J. Physiol. Heart Circ. Physiol.289(5), H1794–H1795 (2005).
  • Bray GA. Medical consequences of obesity. J. Clin. Endocrinol. Metab.89(6), 2583–2589 (2004).
  • Kushner RF, Roth JL. Assessment of the obese patient. Endocrinol. Metab. Clin. North Am.32(4), 915–933 (2003).
  • Brennan AM, Mantzoros CS. Drug insight: the role of leptin in human physiology and pathophysiology – emerging clinical applications. Nat. Clin. Pract. Endocrinol. Metab.2(6), 318–327 (2006).
  • Jequier E. Leptin signaling, adiposity, and energy balance. Ann. NY Acad. Sci.967379–388 (2002).
  • Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes53(Suppl. 1), S143–S151 (2004).
  • Wang MY, Orci L, Ravazzola M, Unger RH. Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: implications for treatment of human obesity. Proc. Natl Acad. Sci. USA102(50), 18011–18016 (2005).
  • Franks PW, Brage S, Luan J et al. Leptin predicts a worsening of the features of the metabolic syndrome independently of obesity. Obes. Res.13(8), 1476–1484 (2005).
  • Ruano M, Silvestre V, Castro R et al. Morbid obesity, hypertensive disease and the renin–angiotensin–aldosterone axis. Obes. Surg.15(5), 670–676 (2005).
  • Morse SA, Bravo PE, Morse MC, Reisin E. The heart in obesity-hypertension. Expert Rev. Cardiovasc. Ther.3(4), 647–658 (2005).
  • Coatmellec-Taglioni, G, Ribiere C. Factors that influence the risk of hypertension in obese individuals. Curr. Opin. Nephrol. Hypertens.12(3), 305–308 (2003).
  • Dubinski, A, Zdrojewicz, Z. The role of leptin in the development of hypertension. Postepy Hig. Med. Dosw. (Online)60447–452 (2006).
  • Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc. Health Risk Manag.2(2), 163–169 (2006).
  • Van, Harmelen V, Reynisdottir S, Eriksson P et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes47(6), 913–917 (1998).
  • Couillard C, Mauriege P, Imbeault P et al. Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia. Int. J. Obes. Relat. Metab. Disord.24(6), 782–788 (2000).
  • Acree LS, Montgomery PS, Gardner AW. The influence of obesity on arterial compliance in adult men and women. Vasc. Med.12(3), 183–188 (2007).
  • Jensen MD. Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model. Obesity14(Suppl. 1), 20S–24S (2006).
  • Johnson JA, Fried SK, Pi-Sunyer FX, Albu JB. Impaired insulin action in subcutaneous adipocytes from women with visceral obesity. Am. J. Physiol. Endocrinol. Metab.280(1), E40–E49 (2001).
  • Shen W, Wang Z, Punyanita M et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes. Res.11(1), 5–16 (2003).
  • Abate, N, Garg A. Heterogeneity in adipose tissue metabolism: causes, implications and management of regional adiposity. Prog. Lipid Res.34(1), 53–70 (1995).
  • Rockall AG, Sohaib SA, Evans D et al. Computed tomography assessment of fat distribution in male and female patients with Cushing’s syndrome. Eur. J. Endocrinol.149(6), 561–567 (2003).
  • Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J. Lipid Res.35(8), 1490–1496 (1994).
  • Rockall AG, Sohaib SA, Evans D et al. Hepatic steatosis in Cushing’s syndrome: a radiological assessment using computed tomography. Eur. J. Endocrinol.149(6), 543–548 (2003).
  • Monziols M, Collewet G, Bonneau M, Mariette F, Davenel A, Kouba M. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat science.72, 146–154 (2006).
  • Klein S, Allison DB, Heymsfield SB et al. Waist circumference and cardiometabolic risk: a Consensus Statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity15(5), 1061–1067 (2007).
  • Farin HM, Abbasi F, Reaven GM. Comparison of body mass index versus waist circumference with the metabolic changes that increase the risk of cardiovascular disease in insulin-resistant individuals. Am. J. Cardiol.98(8), 1053–1056 (2006).
  • Brown CD, Higgins M, Donato KA et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes. Res.8(9), 605–619 (2000).
  • DeFronzo RA. Dysfunctional fat cells, lipotoxicity and Type 2 diabetes. Int. J. Clin. Pract. Suppl.143, 9–21 (2004).
  • Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and Type 2 diabetes. Endocr. Rev.23(2), 201–229 (2002).
  • Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension45(5), 828–833 (2005).
  • de Jongh RT, Serne EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes53(11), 2873–2882 (2004).
  • Fagot-Campagna A, Balkau B, Simon D et al. High free fatty acid concentration: an independent risk factor for hypertension in the Paris Prospective Study. Int. J. Epidemiol.27(5), 808–813 (1998).
  • Bays H, Abate N, Chandalia M. Adiposopathy: sick fat causes high blood sugar, high blood pressure, and dyslipidemia. Future Cardiol.1(1), 39–59 (2005).
  • Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ. Res.96(10), 1042–1052 (2005).
  • Jazet IM, Pijl H, Meinders AE. Adipose tissue as an endocrine organ: impact on insulin resistance. Neth. J. Med.61(6), 194–212 (2003).
  • Miner JL. The adipocyte as an endocrine cell. J. Anim. Sci.82(3), 935–941 (2004).
  • Ahima RS. Adipose tissue as an endocrine organ. Obesity14(Suppl. 5), 242S–249S (2006).
  • Schaffler A, Muller-Ladner U, Scholmerich J, Buchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr. Rev.27(5), 449–467 (2006).
  • Caspar-Bauguil S, Cousin B, Galinier A et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett.579(17), 3487–3492 (2005).
  • Fantuzzi G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol.115(5), 911–919 (2005).
  • Trayhurn P, Wood S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr.92347–355 (2004).
  • Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest.112(12), 1785–1788 (2003).
  • Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol.15(11), 2792–2800 (2004).
  • Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J. Surg. Res.126(1), 121–129 (2005).
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest.112(12), 1796–1808 (2003).
  • Xu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112(12), 1821–1830 (2003).
  • Bastard JP, Maachi M, Lagathu C et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw.17(1), 4–12 (2006).
  • Bo S, Gambino R, Pagani A et al. Relationships between human serum resistin, inflammatory markers and insulin resistance. Int. J. Obes. (Lond.)29(11), 1315–1320 (2005).
  • Garanty-Bogacka B, Syrenicz M, Syrenicz A, Gebala A, Lulka D, Walczak M. Serum markers of inflammation and endothelial activation in children with obesity-related hypertension. Neuro. Endocrinol. Lett.26(3), 242–246 (2005).
  • Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J. Clin. Endocrinol. Metab.89(2), 447–452 (2004).
  • Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am. J. Physiol. Heart Circ. Physiol.288(5), H2031–H2041 (2005).
  • Fain JN, Bahouth SW, Madan AK. TNFa release by the nonfat cells of human adipose tissue. Int. J. Obes. Relat. Metab. Disord.28(4), 616–622 (2004).
  • Fain JN, Tichansky DS, Madan AK. Most of the interleukin 1 receptor antagonist, cathepsin S, macrophage migration inhibitory factor, nerve growth factor, and interleukin 18 release by explants of human adipose tissue is by the non-fat cells, not by the adipocytes. Metabolism55(8), 1113–1121 (2006).
  • Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K. Analysis of an expression profile of genes in the human adipose tissue. Gene190(2), 227–235 (1997).
  • Bastard JP, Jardel C, Delattre J, Hainque B, Bruckert E, Oberlin F. Evidence for a link between adipose tissue interleukin-6 content and serum C-reactive protein concentrations in obese subjects. Circulation99(16), 2221–2222 (1999).
  • Matsuzawa Y. Adipocytokines: emerging therapeutic targets. Curr. Atheroscler. Rep.7(1), 58–62 (2005).
  • Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of Type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes51(4), 1131–1137 (2002).
  • Bluher M, Fasshauer M, Tonjes A, Kratzsch J, Schon MR, Paschke R. Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp. Clin. Endocrinol. Diabetes113(9), 534–537 (2005).
  • Forouhi NG, Sattar N, McKeigue PM. Relation of C-reactive protein to body fat distribution and features of the metabolic syndrome in Europeans and South Asians. Int. J. Obes. Relat. Metab. Disord.25(9), 1327–1331 (2001).
  • Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin. Endocrinol. (Oxf.)64(4), 355–365 (2006).
  • Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor a, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J. Endocrinol. Invest.30(3), 210–214 (2007).
  • Zvonic S, Baugh JE Jr, Arbour-Reily P, Mynatt RL, Stephens JM. Cross-talk among gp130 cytokines in adipocytes. J. Biol. Chem.280(40), 33856–33863 (2005).
  • Schling, P, Loffler G. Cross talk between adipose tissue cells: impact on pathophysiology. News Physiol. Sci.1799–104 (2002).
  • Costa JL, Hochgeschwender U, Brennan M. The role of melanocyte-stimulating hormone in insulin resistance and Type 2 diabetes mellitus. Treat. Endocrinol.5(1), 7–13 (2006).
  • Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol. Metab.17(10), 416–422 (2006).
  • Bartness TJ, Kay, Song C, Shi H, Bowers RR, Foster MT. Brain-adipose tissue cross talk. Proc. Nutr. Soc.64(1), 53–64 (2005).
  • Argiles JM, Lopez-Soriano J, Almendro V, Busquets S, Lopez-Soriano FJ. Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med. Res. Rev.25(1), 49–65 (2005).
  • Samec S, Seydoux J, Dulloo AG. Interorgan signaling between adipose tissue metabolism and skeletal muscle uncoupling protein homologs: is there a role for circulating free fatty acids? Diabetes47(11), 1693–1698 (1998).
  • Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK. Tumor necrosis factor-a induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes54(10), 2939–2945 (2005).
  • Storz P, Doppler H, Wernig A, Pfizenmaier K, Muller G. Cross-talk mechanisms in the development of insulin resistance of skeletal muscle cells palmitate rather than tumour necrosis factor inhibits insulin-dependent protein kinase B (PKB)/Akt stimulation and glucose uptake. Eur. J. Biochem.266(1), 17–25 (1999).
  • Alpert MA, Fraley MA, Birchem JA, Senkottaiyan N. Management of obesity cardiomyopathy. Expert Rev. Cardiovasc. Ther.3(2), 225–230 (2005).
  • Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res.96(9), 939–949 (2005).
  • Fruhbeck G. The adipose tissue as a source of vasoactive factors. Curr. Med. Chem. Cardiovasc. Hematol. Agents2(3), 197–208 (2004).
  • Matsuzawa Y. Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat. Clin. Pract.3(1), 35–42 (2006).
  • Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.286(6), R1013–R1023 (2004).
  • Paquot N, Tappy L. Adipocytolines: link between obesity, Type 2 diabetes and atherosclerosis. Rev. Med. Liege60(5–6), 369–373 (2005).
  • Bays H. Adiposopathy: role of adipocyte factors in a new paradigm. Expert Rev. Cardiovasc.Ther.3(2), 187–189 (2005).
  • Uno K, Katagiri H, Yamada T et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science312(5780), 1656–1659 (2006).
  • Schaffler A, Scholmerich J, Buchler C. Mechanisms of disease: adipocytokines and visceral adipose tissue – emerging role in nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol.2(6), 273–280 (2005).
  • Schaffler A, Scholmerich J, Buchler C. Mechanisms of disease: adipocytokines and visceral adipose tissue – emerging role in intestinal and mesenteric diseases. Nat. Clin. Pract. Gastroenterol. Hepatol.2(2), 103–111 (2005).
  • Rossi GP, Sticchi D, Giuliani L et al. Adiponectin receptor expression in the human adrenal cortex and aldosterone-producing adenomas. Int. J. Mol. Med.17(6), 975–980 (2006).
  • Ghizzoni L, Mastorakos G, Ziveri M et al. Interactions of leptin and thyrotropin 24-hour secretory profiles in short normal children. J. Clin. Endocrinol. Metab.86(5), 2065–2072 (2001).
  • Porte D Jr. Central regulation of energy homeostasis. Diabetes55(Suppl. 2), S155–S160 (2006).
  • Perez-Tilve D, Stern JE, Tschop M. The brain and the metabolic syndrome: not a wireless connection. Endocrinology147(3), 1136–1139 (2006).
  • Egan BM. Insulin resistance and the sympathetic nervous system. Curr. Hypertens. Rep.5(3), 247–254 (2003).
  • Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ. Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol.289(5), R1467–R1476 (2005).
  • Bays H. The melanocortin system as a therapeutic treatment target for adiposity and adiposopathy. Drugs RD7(5), 289–302 (2006).
  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev.20(1), 68–100 (1999).
  • Konturek PC, Konturek JW, Czesnikiewicz-Guzik M, Brzozowski T, Sito E, Konturek PC. Neuro-hormonal control of food intake; basic mechanisms and clinical implications. J. Physiol. Pharmacol.56(Suppl. 6), 5–25 (2005).
  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature404(6778), 661–671 (2000).
  • Baskin DG, Hahn TM, Schwartz MW. Leptin sensitive neurons in the hypothalamus. Horm. Metab. Res.31(5), 345–350 (1999).
  • Benoit SC, Air EL, Coolen LM et al. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci.22(20), 9048–9052 (2002).
  • Breen TL, Conwell IM, Wardlaw SL. Effects of fasting, leptin, and insulin on AGRP and POMC peptide release in the hypothalamus. Brain Res.1032(1–2), 141–148 (2005).
  • Bruning JC, Gautam D, Burks DJ et al. Role of brain insulin receptor in control of body weight and reproduction. Science289(5487), 2122–2125 (2000).
  • Havel PJ. Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc. Nutr. Soc.59(3), 359–371 (2000).
  • Havrankova J, Brownstein M, Roth J. Insulin and insulin receptors in rodent brain. Diabetologia20(Suppl.), 268–273 (1981).
  • Liu J, da Silva AA, Tallam LS, Hall JE. Chronic central nervous system hyperinsulinemia and regulation of arterial pressure and food intake. J. Hypertens.24(7), 1391–1395 (2006).
  • Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci.5(6), 566–572 (2002).
  • Plum L, Belgardt BF, Bruning JC. Central insulin action in energy and glucose homeostasis. J. Clin. Invest.116(7), 1761–1766 (2006).
  • Buono P, Pasanisi F, Nardelli C et al. Six novel mutations in the proopiomelanocortin and melanocortin receptor 4 genes in severely obese adults living in southern Italy. Clin. Chem.51(8), 1358–1364 (2005).
  • Li G, Mobbs CV, Scarpace PJ. Central pro-opiomelanocortin gene delivery results in hypophagia, reduced visceral adiposity, and improved insulin sensitivity in genetically obese Zucker rats. Diabetes52(8), 1951–1957 (2003).
  • Adan RA, Kas MJ. Inverse agonism gains weight. Trends Pharmacol. Sci.24(6), 315–321 (2003).
  • Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron24(1), 155–163 (1999).
  • Hwa JJ, Witten MB, Williams P et al. Activation of the NPY Y5 receptor regulates both feeding and energy expenditure. Am. J. Physiol.277(5 Pt 2), R1428–R1434 (1999).
  • Marsh DJ, Hollopeter G, Kafer KE, Palmiter RD. Role of the Y5 neuropeptide Y receptor in feeding and obesity. Nat. Med.4(6), 718–721 (1998).
  • Palmiter RD, Erickson JC, Hollopeter G, Baraban SC, Schwartz MW. Life without neuropeptide Y. Recent Prog. Horm. Res.53, 163–199 (1998).
  • Govaerts C, Srinivasan S, Shapiro A et al. Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides26(10), 1909–1919 (2005).
  • la-Fera MA, Baile CA. Roles for melanocortins and leptin in adipose tissue apoptosis and fat deposition. Peptides26(10), 1782–1787 (2005).
  • MacKenzie RG. Obesity-associated mutations in the human melanocortin-4 receptor gene. Peptides27(2), 395–403 (2006).
  • Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central melanocortin receptors regulate insulin action. J. Clin. Invest.108(7), 1079–1085 (2001).
  • Savontaus E, Breen TL, Kim A, Yang LM, Chua SC Jr, Wardlaw SL. Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology145(8), 3881–3891 (2004).
  • Yeo GS, Farooqi IS, Challis BG, Jackson RS, O’Rahilly S. The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models. QJM93(1), 7–14 (2000).
  • Joseph-Bravo P. Hypophysiotropic thyrotropin-releasing hormone neurons as transducers of energy homeostasis. Endocrinology145(11), 4813–4815 (2004).
  • Richard D, Huang Q, Timofeeva E. The corticotropin-releasing hormone system in the regulation of energy balance in obesity. Int. J. Obes. Relat. Metab. Disord.24(Suppl. 2), S36–S39 (2000).
  • Bensaid M, Gary-Bobo M, Esclangon A et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol.63(4), 908–914 (2003).
  • Cota D, Marsicano G, Tschop M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest.112(3), 423–431 (2003).
  • Huffman JW. CB2 receptor ligands. Mini Rev. Med. Chem.5(7), 641–649 (2005).
  • Lichtman AH, Cravatt BF. Food for thought: endocannabinoid modulation of lipogenesis. J. Clin. Invest.115(5), 1130–1133 (2005).
  • Osei-Hyiaman D, Harvey-White J, Batkai S, Kunos G. The role of the endocannabinoid system in the control of energy homeostasis. Int. J. Obes. (Lond.)30(Suppl. 1), S33–S38 (2006).
  • Pagotto U, Vicennati V, Pasquali R. The endocannabinoid system and the treatment of obesity. Ann. Med.37(4), 270–275 (2005).
  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev.27(1), 73–100 (2006).
  • Pagotto U, Cervino C, Vicennati V, Marsicano G, Lutz B, Pasquali R. How many sites of action for endocannabinoids to control energy metabolism? Int. J. Obes. (Lond.)30(Suppl. 1), S39–S43 (2006).
  • Roche R, Hoareau L, Bes-Houtmann S et al. Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes. Histochem. Cell Biol.126(2), 177–187 (2006).
  • Tomas F, Kelly M, Xiang X et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc. Nutr. Soc.63(2), 381–385 (2004).
  • Batterham RL, Cowley MA, Small CJ et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature418(6898), 650–654 (2002).
  • Ellacott KL, Halatchev IG, Cone RD. Interactions between gut peptides and the central melanocortin system in the regulation of energy homeostasis. Peptides27(2), 340–349 (2006).
  • Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc. Nutr. Soc.63(2), 363–368 (2004).
  • Adams JM, Pratipanawatr T, Berria R et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes53(1), 25–31 (2004).
  • Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem.280(20), 20148–20153 (2005).
  • Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care24(5), 933–941 (2001).
  • Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a re-examination. Diabetes49, 677–683 (2000).
  • Cha BS, Ciaraldi TP, Park KS, Carter L, Mudaliar SR, Henry RR. Impaired fatty acid metabolism in Type 2 diabetic skeletal muscle cells is reversed by PPARgγ agonists. Am. J. Physiol. Endocrinol. Metab.289(1), E151–E159 (2005).
  • Grill V, Persson G, Carlsson S et al. Family history of diabetes in middle-aged Swedish men is a gender unrelated factor which associates with insulinopenia in newly diagnosed diabetic subjects. Diabetologia42(1), 15–23 (1999).
  • Petersen KF, Befroy D, Dufour S et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science300(5622), 1140–1142 (2003).
  • Wolk R, Shamsuzzaman AS, Somers VK. Obesity, sleep apnea, and hypertension. Hypertension42(6), 1067–1074 (2003).
  • Zhang R, Reisin E. Obesity-hypertension: the effects on cardiovascular and renal systems. Am. J. Hypertens.13(12), 1308–1314 (2000).
  • McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann. Intern. Med.144(7), 517–524 (4–4-2006).
  • Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the theory of everything. Expert Rev. Cardiovasc.Ther.3(3), 393–404 (2005).
  • Kim SH, Reaven GM. The metabolic syndrome: one step forward, two steps back. Diab. Vasc. Dis. Res.1(2), 68–75 (2004).
  • Reaven GM. The metabolic syndrome: is this diagnosis necessary? Am. J. Clin. Nutr.83(6), 1237–1247 (2006).
  • Reaven G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol. Metab. Clin. North Am.33(2), 283–303 (2004).
  • Stern MP, Williams K, Gonzalez-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of Type 2 diabetes and/or cardiovascular disease? Diabetes Care27(11), 2676–2681 (2004).
  • Goldfarb B. ADA/EASD statement casts critical eye on metabolic syndrome. DOC News2(10), 1 (2006).
  • Iribarren C, Go AS, Husson G et al. Metabolic syndrome and early-onset coronary artery disease: is the whole greater than its parts? J. Am. Coll. Cardiol.48(9), 1800–1807 (2006).
  • Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation106(25), 3143–3421 (2002).
  • Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med.15(7), 539–553 (1998).
  • Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care28(9), 2289–2304 (2005).
  • Grundy SM. Does the metabolic syndrome exist? Diabetes Care29(7), 1689–1692 (2006).
  • Grundy SM. Does a diagnosis of metabolic syndrome have value in clinical practice? Am. J. Clin. Nutr.83(6), 1248–1251 (2006).
  • Davidson MB. Does the metabolic syndrome exist: response to Grundy. Diabetes Care29(11), 2565–2566 (2006).
  • Bays H, Chapman R, Klingman D, Fanning K, Grandy S. High prevalence of misdiagnosis of the metabolic syndrome in a self-reported survey: possible confusion with having “a metabolism problem”. NAASO 2006 Annual Meeting.Boston Massachusetts USA. October 22, 2006 (Abstract 605).
  • Pladevall M, Singal B, Williams LK et al. A single factor underlies the metabolic syndrome: a confirmatory factor analysis. Diabetes Care29(1), 113–122 (2006).
  • Lebovitz HE. Insulin resistance – a common link between Type 2 diabetes and cardiovascular disease. Diabetes Obes. Metab.8(3), 237–249 (2006).
  • Stern MP. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes44(4), 369–374 (1995).
  • Bays H. Adiposopathy: the endocannabinoid system as a therapeutic treatment target for dysfunctional “sick” fat. CJHP19(1), 32–39 (2007).
  • Bays H. Adiposopathy - Defining, diagnosing, and establishing indications to treat “sick fat”: what are the regulatory considerations? US Endocrine Dis.2, 12–14 (2006).
  • Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes. Res.12(8), 1197–1211 (2004).
  • Iwen KA, Perwitz N, Kraus D, Fasshauer M, Klein J. Putting fat cells onto the road map to novel therapeutic strategies. Discov. Med.6(32), 75–81 (2006).
  • Golay A, Ybarra J. Link between obesity and Type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab.19(4), 649–663 (2005).
  • Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab.22(2), 122–131 (1996).
  • Kannisto K, Pietilainen KH, Ehrenborg E et al. Overexpression of 11β-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J. Clin. Endocrinol. Metab.89(9), 4414–4421 (2004).
  • Wake DJ, Rask E, Livingstone DE, Soderberg S, Olsson T, Walker BR. Local and systemic impact of transcriptional up-regulation of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J. Clin. Endocrinol. Metab.88(8), 3983–3988 (2003).
  • Walker BR. 11β-hydroxysteroid dehydrogenase type 1 in obesity. Obes. Res.12(1), 1–3 (2004).
  • Putignano P, Pecori, Giraldi F, Cavagnini F. Tissue-specific dysregulation of 11β-hydroxysteroid dehydrogenase type 1 and pathogenesis of the metabolic syndrome. J. Endocrinol. Invest.27(10), 969–974 (2004).
  • Wolf G. Glucocorticoids in adipocytes stimulate visceral obesity. Nutr. Rev.60(5 Pt 1), 148–151 (2002).
  • Masuzaki, H, Flier JS. Tissue-specific glucocorticoid reactivating enzyme, 11 β-hydroxysteroid dehydrogenase type 1 (11 β-HSD1) – a promising drug target for the treatment of metabolic syndrome. Curr. Drug Targets. Immune Endocr.Metabol. Disord.3(4), 255–262 (2003).
  • Fujimoto WY, Jablonski KA, Bray GA et al. Body size and shape changes and the risk of diabetes in the diabetes prevention program. Diabetes56(6), 1680–1685 (2007).
  • Pi-Sunyer X, Blackburn G, Brancati FL et al. Reduction in weight and cardiovascular disease risk factors in individuals with Type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care30(6), 1374–1383 (2007).
  • Anderson JW, Kendall CW, Jenkins DJ. Importance of weight management in Type 2 diabetes: review with meta-analysis of clinical studies. J. Am. Coll. Nutr.22(5), 331–339 (2003).
  • Henry RR, Gumbiner B. Benefits and limitations of very-low-calorie diet therapy in obese NIDDM. Diabetes Care14(9), 802–823 (1991).
  • Tsai AG, Wadden TA. Systematic review: an evaluation of major commercial weight loss programs in the United States. Ann. Intern. Med.142(1), 56–66 (2005).
  • Wadden TA, Berkowitz RI, Womble LG et al. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N. Engl. J. Med.353(20), 2111–2120 (2005).
  • Gardner CD, Kiazand A, Alhassan S et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA297(9), 969–977 (2007).
  • Viguerie N, Vidal H, Arner P et al. Adipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets. Diabetologia48(1), 123–131 (2005).
  • Hamman RF, Wing RR, Edelstein SL et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care29, 2102–2107 (2006).
  • Diaz VA, Player MS, Mainous AG 3rd, Carek PJ, Geesey ME. Competing impact of excess weight versus cardiorespiratory fitness on cardiovascular risk. Am. J. Cardiol.98(11), 1468–1471 (2006).
  • Larson-Meyer DE, Heilbronn LK, Redman LM et al. Effect of calorie restriction with or without exercise on insulin sensitivity, β-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care29(6), 1337–1344 (2006).
  • Norris SL, Zhang X, Avenell A et al. Long-term effectiveness of lifestyle and behavioral weight loss interventions in adults with Type 2 diabetes: a meta-analysis. Am. J. Med.117(10), 762–774 (2004).
  • Aucott L, Poobalan A, Smith WC et al. Weight loss in obese diabetic and non-diabetic individuals and long-term diabetes outcomes – a systematic review. Diabetes Obes. Metab.6(2), 85–94 (2004).
  • Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with Type 2 diabetes. Ann. Intern. Med.142(6), 403–411 (2005).
  • Bruun JM, Helge JW, Richelsen B, Stallknecht B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am. J. Physiol. Endocrinol. Metab. (2005).
  • Straznicky NE, Louis WJ, McGrade P, Howes LG. The effects of dietary lipid modification on blood pressure, cardiovascular reactivity and sympathetic activity in man. J. Hypertens.11(4), 427–437 (1993).
  • Aucott L, Poobalan A, Smith WC, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension45(6), 1035–1041 (2005).
  • Stone NJ, Kushner R. Effects of dietary modification and treatment of obesity. Emphasis on improving vascular outcomes. Med. Clin. North Am.84(1), 95–122 (2000).
  • Chen AK, Roberts CK, Barnard RJ. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism55(7), 871–878 (2006).
  • Bassuk SS, Manson JE. Epidemiological evidence for the role of physical activity in reducing risk of Type 2 diabetes and cardiovascular disease. J. Appl. Physiol.99(3), 1193–1204 (2005).
  • Astrup A, Finer N. Redefining Type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes. Rev.1(2), 57–59 (2000).
  • Avenell A, Brown TJ, McGee MA et al. What are the long-term benefits of weight reducing diets in adults? A systematic review of randomized controlled trials. J. Hum. Nutr. Diet17(4), 317–335 (2004).
  • Deeg MA, Buse JB, Goldberg RB et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with Type 2 diabetes and dyslipidemia. Diabetes Care (2007).
  • Chilton R, Chiquette E. Thiazolidinediones and cardiovascular disease. Curr. Atheroscler. Rep.7(2), 115–120 (2005).
  • Bosch J, Yusuf S, Gerstein HC Wareham NJ. Results of the DREAM trial (Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication). Presented at: European Association for the Study of Diabetes Annual Meeting. Copenhagen, Denmark, September 14–17, 2006.
  • Clasen R, Schupp M, Foryst-Ludwig A et al. PPARγ-activating angiotensin type-1 receptor blockers induce adiponectin. Hypertension46(1), 137–143 (2005).
  • Erol A. The role of fat tissue in the cholesterol lowering and the pleiotropic effects of statins – statins activate the generation of metabolically more capable adipocytes. Med. Hypotheses64(1), 69–73 (2005).
  • Bray GA. The underlying basis for obesity: relationship to cancer. J. Nutr.132(11 Suppl.), S3451–S3455 (2002).
  • Franks S. Polycystic ovary syndrome. N. Engl. J. Med.333(13), 853–861 (1995).
  • Silfen ME, Denburg MR, Manibo AM et al. Early endocrine, metabolic, and sonographic characteristics of polycystic ovary syndrome (PCOS): comparison between nonobese and obese adolescents. J. Clin. Endocrinol. Metab.88(10), 4682–4688 (2003).
  • Mai K, Bobbert T, Kullmann V et al. Free fatty acids increase androgen precursors in vivo.J. Clin. Endocrinol. Metab.91(4), 1501–1507 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.