165
Views
19
CrossRef citations to date
0
Altmetric
Review

Neuroprotection during cardiac surgery

, &
Pages 503-520 | Published online: 10 Jan 2014

References

  • Ferguson TB Jr, Hammill BG, Peterson ED, DeLong ER, Grover FL. A decade of change – risk profiles and outcomes for isolated coronary artery bypass grafting procedures, 1990–1999: a report from the STS National Database Committee and the Duke Clinical Research Institute. Society of Thoracic Surgeons. Ann. Thorac. Surg.73(2), 480–489 (2002).
  • Roach GW, Kanchuger M, Mangano CM et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N. Engl. J. Med.335(25), 1857–1863 (1996).
  • Hogue CW Jr, Murphy SF, Schechtman KB, Davila-Roman VG. Risk factors for early or delayed stroke after cardiac surgery. Circulation100(6), 642–647 (1999).
  • Motallebzadeh R, Bland JM, Markus HS, Kaski JC, Jahangiri M. Neurocognitive function and cerebral emboli: randomized study of on-pump versus off-pump coronary artery bypass surgery. Ann. Thorac. Surg.83(2), 475–482 (2007).
  • Newman MF, Kirchner JL, Phillips-Bute B et al. Longitudinal assessment of neurocognitive function after coronary artery bypass surgery. N. Engl. J. Med.344, 395–402 (2001).
  • Newman MF, Grocott HP, Mathew JP et al. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke32(12), 2874–2881 (2001).
  • Phillips-Bute B, Mathew JP, Blumenthal JA et al. Association of neurocognitive function and quality of life 1 year after coronary artery bypass graft (CABG) surgery. Psychosom. Med.68(3), 369–375 (2006).
  • Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann. Thorac. Surg.59(5), 1289–1295 (1995).
  • Van Dijk D, Jansen EW, Hijman R et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: a randomized trial. JAMA287(11), 1405–1412 (2002).
  • Cook DJ, Huston J 3rd, Trenerry MR, Brown RD Jr, Zehr KJ, Sundt TM 3rd. Postcardiac surgical cognitive impairment in the aged using diffusion-weighted magnetic resonance imaging. Ann. Thorac. Surg.83(4), 1389–1395 (2007).
  • van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos LM, Mali WP. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke29(9), 1783–1790 (1998).
  • Singer MB, Chong J, Lu D, Schonewille WJ, Tuhrim S, Atlas SW. Diffusion-weighted MRI in acute subcortical infarction. Stroke29(1), 133–136 (1998).
  • Cramer SC, Nelles G, Benson RR et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke28(12), 2518–2527 (1997).
  • Hogue CW Jr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth. Analg.103(1), 21–37 (2006).
  • Grocott HP, Homi HM, Puskas F. Cognitive dysfunction after cardiac surgery: revisiting etiology. Semin. Cardiothorac. Vasc. Anesth.9(2), 123–129 (2005).
  • Hindman BJ. Emboli, inflammation, and CNS impairment: an overview. Heart Surg. Forum.5(3), 249–253 (2002).
  • Ti LK, Mathew JP, Mackensen GB et al. Effect of apolipoprotein E genotype on cerebral autoregulation during cardiopulmonary bypass. Stroke32(7), 1514–1519 (2001).
  • Mathew JP, Podgoreanu MV, Grocott HP et al. Genetic variants in P-selectin and C-reactive protein influence susceptibility to cognitive decline after cardiac surgery. J. Am. Coll. Cardiol.49(19), 1934–1942 (2007).
  • Pugsley W, Klinger L, Paschalis C et al. Microemboli and cerebral impairmant during cardiac surgery. Vasc. Surg.24, 34–43 (1990).
  • Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke25(7), 1393–1399. (1994).
  • Stump DA, Rogers AT, Hammon JW, Newman SP. Cerebral emboli and cognitive outcome after cardiac surgery. J. Cardiothorac. Vasc. Anesth.10(1), 113–118; quiz 118–119 (1996).
  • Bar-Yosef S, Anders M, Mackensen GB et al. Aortic atheroma burden and cognitive dysfunction after coronary artery bypass graft surgery. Ann. Thorac. Surg.78(5), 1556–1562 (2004).
  • Neville MJ, Butterworth J, James RL, Hammon JW, Stump DA. Similar neurobehavioral outcome after valve or coronary artery operations despite differing carotid embolic counts. J. Thorac. Cardiovasc. Surg.121(1), 125–136 (2001).
  • Mutch WA, Ryner LN, Kozlowski P et al. Cerebral hypoxia during cardiopulmonary bypass: a magnetic resonance imaging study. Ann. Thorac. Surg.64, 695–701 (1997).
  • Harris D, Oatridge A, Dob D, Smith P, Taylor K, Bydder G. Cerebral swelling after normothermic cardiopulmonary bypass. Anesthesiology88(2), 340–345 (1998).
  • Mathew JP, Rinder CS, Howe JG et al. Platelet PlA2 polymorphism enhances risk of neurocognitive decline after cardiopulmonary bypass. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Ann. Thorac. Surg.71(2), 663–666. (2001).
  • Hindman BJ, Moore SA, Cutkomp J et al. Brain expression of inducible cyclooxygenase 2 messenger RNA in rats undergoing cardiopulmonary bypass. Anesthesiology95(6), 1380–1388. (2001).
  • Tardiff BE, Newman MF, Saunders AM et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. Ann. Thorac. Surg.64, 715–720 (1997).
  • Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S. Apolipoprotein E epsilon-4 associated with chronic traumatic brain injury in boxing. JAMA278, 136–140 (1997).
  • Saunders A, Strittmatter W, Schmechel D et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology43, 1467–1472 (1993).
  • Schmechel DE, Saunders AM, Strittmatter WJ et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset al.heimer disease. Proc. Natl Acad. Sci. USA90(20), 9649–9653 (1993).
  • Steed L, Kong R, Stygall J et al. The role of apolipoprotein E in cognitive decline after cardiac operation. Ann. Thorac. Surg.71(3), 823–826 (2001).
  • Grocott HP, White WD, Morris RW et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke36(9), 1854–1858 (2005).
  • Sato Y, Laskowitz DT, Bennett ER, Newman MF, Warner DS, Grocott HP. Differential cerebral gene expression during cardiopulmonary bypass in the rat: evidence for apoptosis?Anesth. Analg.94(6), 1389–1394 (2002).
  • Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology64(2), 165–170 (1986).
  • Zaidan JR, Klochany A, Martin WM, Ziegler JS, Harless DM, Andrews RB. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology74(3), 406–411 (1991).
  • Mackensen GB, Nellgard B, Sarraf-Yazdi S et al. Post-ischemic RSR13 amplifies the effect of dizocilpine on outcome from transient focal cerebral ischemia in the rat. Brain Res.853(1), 15–21 (2000).
  • Ma D, Yang H, Lynch J, Franks NP, Maze M, Grocott HP. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology98(3), 690–698 (2003).
  • Homi HM, Yokoo N, Venkatakrishnan K, Bednar MM, Grocott HP. Neuroprotection by antagonism of the N-Methyl-D-Aspartate Receptor NR2B subtype in a rat model of cardiopulmonary bypass. AnesthesiologyA878 (2004).
  • Arrowsmith JE, Harrison MJG, Newman SP, Stygall J, Timberlake N, Pugsley WB. Neuroprotection of the brain during cardioulmonary bypass. A randomized trial of remacemide during coronary artery bypass in 171 patients. Stroke29, 2357–2362 (1998).
  • Bhudia SK, Cosgrove DM, Naugle RI et al. Magnesium as a neuroprotectant in cardiac surgery: a randomized clinical trial. J. Thorac. Cardiovasc. Surg.131(4), 853–861 (2006).
  • Temkin NR, Anderson GD, Winn HR et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol.6(1), 29–38 (2007).
  • Nagels W, Demeyere R, Van Hemelrijck J, Vandenbussche E, Gijbels K, Vandermeersch E. Evaluation of the neuroprotective effects of s(+)-ketamine during open-heart surgery. Anesth. Analg.98(6), 1595–1603 (2004).
  • Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR. How does xenon produce anaesthesia? Nature396(6709), 324 (1998).
  • Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology96(6), 1485–1491 (2002).
  • Lockwood GG, Franks NP, Downie NA, Taylor KM, Maze M. Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology104(3), 458–465 (2006).
  • Jungwirth B, Gordan ML, Blobner M, Schmehl W, Kochs EF, Mackensen GB. Xenon impairs neurocognitive and histologic outcome after cardiopulmonary bypass combined with cerebral air embolism in rats. Anesthesiology104(4), 770–776 (2006).
  • Mitchell SJ, Pellett O, Gorman DF. Cerebral protection by lidocaine during cardiac operations. Ann. Thorac. Surg.67(4), 1117–1124 (1999).
  • Wang D, Wu X, Li J, Xiao F, Liu X, Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth. Analg.95(5), 1134–1141. (2002).
  • Mathew JP, Grocott HP, Phillips-Bute B, Newman MF. Lidocaine does not prevent cognitive dysfunction after cardiac surgery. Anesth. Analg.98, SCA 13 (2004).
  • Amory DW, Grigore A, Amory JK et al. Neuroprotection is associated with β-adrenergic receptor antagonists during cardiac surgery: Evidence from 2,575 patients. J. Cardiothorac. Vasc. Anesth.16(3), 270–277 (2002).
  • Levy J, Ramsay J, Murkin J. Aprotinin reduces the incidence of strokes following cardiac surgery. Circulation94(Suppl.), I-535 (1996).
  • Levy JH, Pifarre R, Schaff HV et al. A multicenter, double-blind, placebo-controlled trial of aprotinin for reducing blood loss and the requirement for donor-blood transfusion in patients undergoing repeat coronary artery bypass grafting. Circulation92(8), 2236–2244 (1995).
  • Frumento RJ, O’Malley CM, Bennett-Guerrero E. Stroke after cardiac surgery: a retrospective analysis of the effect of aprotinin dosing regimens. Ann. Thorac. Surg.75(2), 479–483; discussion 483–484 (2003).
  • Harmon DC, Ghori KG, Eustace NP, O’Callaghan S J, O’Donnell AP, Shorten GD. Aprotinin decreases the incidence of cognitive deficit following CABG and cardiopulmonary bypass: a pilot randomized controlled study: [L’aprotinine reduit l’incidence de deficit cognitif a la suite d’un PAC et de la circulation extracorporelle: une etude pilote randomisee et controlee]. Can. J. Anaesth.51(10), 1002–1009 (2004).
  • Murkin JM. Postoperative cognitive dysfunction: aprotinin, bleeding and cognitive testing/Dysfonction cognitive postoperatoire: aprotinine, hemorragie et epreuves cognitives. Can. J. Anaesth.51(10), 957–962 (2004).
  • Grocott HP, Sheng H, Miura Y et al. The effects of aprotinin on outcome from cerebral ischemia in the rat. Anesth. Analg.88(1), 1–7 (1999).
  • Brooker RF, Brown WR, Moody DM et al. Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann. Thorac. Surg.65(6), 1651–1655 (1998).
  • Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N. Engl. J. Med.354(4), 353–365 (2006).
  • Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke25(4), 869–875; discussion 875–866 (1994).
  • Clark RK, Lee EV, White RF, Jonak ZL, Feuerstein GZ, Barone FC. Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res. Bull.35(4), 387–392 (1994).
  • Bracken MB, Shepard MJ, Collins WF et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med.322(20), 1405–1411 (1990).
  • Roberts I, Yates D, Sandercock P et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet364(9442), 1321–1328 (2004).
  • Wass CT, Lanier WL. Glucose modulation of ischemic brain injury: review and clinical recommendations. Mayo Clin. Proc.71(8), 801–812 (1996).
  • Li P, Kristian T, Shamloo M, Siesjo B. Effects of preischemic hyperglycemia on brain damage incurred by rats subjected to 2.5 or 5 minutes of forebrain ischemia. Stroke27, 1592–1602 (1996).
  • Lam AM, Winn HR, Cullen BF, Sundling N. Hyperglycemia and neurological outcome in patients with head injury. J. Neurosurg.75(4), 545–551 (1991).
  • Chaney MA. Corticosteroids and cardiopulmonary bypass: a review of clinical investigations. Chest121(3), 921–931 (2002).
  • Kavanagh RJ, Kam PC. Lazaroids. Efficacy and mechanism of action of the 21-aminosteroids in neuroprotection. Br. J. Anaesth.86(1), 110–119 (2001).
  • Hall ED, Andrus PK, Yonkers PA et al. Generation and detection of hydroxyl radical following experimental head injury. Ann. NY Acad. Sci.738, 15–24 (1994).
  • Hall ED, Yonkers PA, McCall JM, Braughler JM. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J. Neurosurg.68(3), 456–461 (1988).
  • Marshall LF, Maas AI, Marshall SB et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J. Neurosurg.89(4), 519–525 (1998).
  • Fitch JC, Rollins S, Matis L et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation100(25), 2499–2506 (1999).
  • Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann. Thorac. Surg.75(2), S715–S720 (2003).
  • Mathew JP, Shernan SK, White WD et al. Preliminary report of the effects of complement suppression with pexelizumab on neurocognitive decline after coronary artery bypass graft surgery. Stroke35(10), 2335–2339 (2004).
  • Guan J, Thomas GB, Lin H et al. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology47(6), 892–903 (2004).
  • Saura J, Curatolo L, Williams CE et al. Neuroprotective effects of Gly-Pro-Glu, the N-terminal tripeptide of IGF-1, in the hippocampus in vitro. Neuroreport10(1), 161–164 (1999).
  • Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab.7(6), 729–738 (1987).
  • Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med.346(8), 557–563 (2002).
  • Michenfelder J, Milde J. The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology75, 130–136 (1991).
  • Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med.346(8), 549–556 (2002).
  • Busto R, Globus M, Dietrich W, Martinez E, Valdes I, Ginsberg M. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke20(7), 904–910 (1989).
  • Bickler PE, Buck LT, Hansen BM. Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices. Anesthesiology81, 1461–1469 (1994).
  • Widmann R, Miyazawa T, Hossmann K. Protective effect of hypothermia on hippocampal injury after 30 minutes of forebrain ischemia in rats is mediated by postischemic recovery of protein synthesis. J. Neurochem.61, 200–209 (1993).
  • Busto R, Globus M, Neary J, Ginsberg M. Regional alterations of protein kinase C activity following transient cerebral ischemia: Effects of intraischemic brain temperature modulation. J. Neurochem.63, 1095–1103 (1994).
  • Nakashima K, Todd MM, Warner DS. The relation between cerebral metabolic rate and ischemic depolarization. A comparison of the effects of hypothermia, pentobarbital, and isoflurane. Anesthesiology82(5), 1199–1208 (1995).
  • Globus M, Busto R, Lin B, Schnippering H, Ginsberg M. Detection of free radical activity during transient global ischemia and recirculation: Effects of intraischemic brain temperature modulation. J. Neurochem.65, 1250–1256 (1995).
  • Kader A, Frazzini V, Baker C, Solomon R, Trifiletti R. Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia. Neurosurgery35, 272–277 (1994).
  • Gaillard D, Bical O, Paumier D, Trivin F. A review of myocardial normothermia: its theoretical basis and the potential clinical benefits in cardiac surgery. Cardiovasc. Surg.8(3), 198–203 (2000).
  • Nicolini F, Beghi C, Muscari C et al. Myocardial protection in adult cardiac surgery: current options and future challenges. Eur. J. Cardiothorac. Surg.24(6), 986–993 (2003).
  • Panos AL, Deslauriers R, Birnbaum PL, Salerno TA. Perspectives on myocardial protection: warm heart surgery. Perfusion8(4), 287–291 (1993).
  • Randomized trial of normothermic versus hypothermic coronary bypass surgery. The Warm Heart Investigators. Lancet343(8897), 559–563 (1994).
  • Martin T, Craver J, Gott J et al. Prospective, randomized trial of retrograde warm blood cardioplegia: myocardial benefit and neurologic threat. Ann. Thorac. Surg.57, 298–302 (1994).
  • Grigore AM, Mathew J, Grocott HP et al. Prospective randomized trial of normothermic versus hypothermic cardiopulmonary bypass on cognitive function after coronary artery bypass graft surgery. Anesthesiology95(5), 1110–1119 (2001).
  • Mora CT, Henson MB, Weintraub WS, Murjin JM, Martin TD. The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychologic outcomes in patients undergoing coronary revascularization. J. Thorac. Cardiovasc. Surg.112, 514–522 (1996).
  • McLean RF, Wong BI, Naylor CD et al. Cardiopulmonary bypass, temperature, and central nervous system dysfunction. Circulation90(5 Pt 2), II250–II255 (1994).
  • Grigore AM, Grocott HP, Mathew JP et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth. Analg.94(1), 4–10 (2002).
  • Grocott HP, Newman MF, Croughwell ND, White WD, Lowry E, Reves JG. Continuous jugular venous versus nasopharyngeal temperature monitoring during hypothermic cardiopulmonary bypass for cardiac surgery. J. Clin. Anesth.9(4), 312–316 (1997).
  • Nathan HJ, Wells GA, Munson JL, Wozny D. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial. Circulation104(12 Suppl. 1), I85–191 (2001).
  • Grocott HP, Mackensen GB, Grigore AM et al. Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery. Stroke33(2), 537–541 (2002).
  • Murkin JM. Etiology and incidence of brain dysfunction after cardiac surgery. J. Cardiothorac. Vasc. Anesth.13(4 Suppl. 1), 12–17; discussion 36–17 (1999).
  • Stephan H, Weyland A, Kazmaier S, Henze T, Menck S, Sonntag H. Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br. J. Anaesth.69(1), 51–57 (1992).
  • Bashein G, Townes BD, Nessly ML et al. A randomized study of carbon dioxide management during hypothermic cardiopulmonary bypass. Anesthesiology72(1), 7–15 (1990).
  • Aldea GS, Soltow LO, Chandler WL et al. Limitation of thrombin generation, platelet activation, and inflammation by elimination of cardiotomy suction in patients undergoing coronary artery bypass grafting treated with heparin-bonded circuits. J. Thorac. Cardiovasc. Surg.123(4), 742–755. (2002).
  • Whitaker DC, Newman SP, Stygall J, Hope-Wynne C, Harrison MJ, Walesby RK. The effect of leucocyte-depleting arterial line filters on cerebral microemboli and neuropsychological outcome following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg.25(2), 267–274 (2004).
  • Kincaid EH, Jones TJ, Stump DA et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann. Thorac. Surg.70(4), 1296–1300 (2000).
  • Challa VR, Lovell MA, Moody DM, Brown WR, Reboussin DM, Markesbery WR. Laser microprobe mass spectrometric study of aluminum and silicon in brain emboli related to cardiac surgery. J. Neuropathol. Exp. Neurol.57(2), 140–147 (1998).
  • Rubens FD, Boodhwani M, Mesana T, Wozny D, Wells G, Nathan HJ. The cardiotomy trial: a randomized, double-blind study to assess the effect of processing of shed blood during cardiopulmonary bypass on transfusion and neurocognitive function. Circulation116(11 Suppl.), I89–97 (2007).
  • Djaiani G, Fedorko L, Borger MA et al. Continuous-flow cell saver reduces cognitive decline in elderly patients after coronary bypass surgery. Circulation116(17), 1888–1895 (2007).
  • Lapietra A, Grossi EA, Pua BB et al. Assisted venous drainage presents the risk of undetected air microembolism. J. Thorac. Cardiovasc. Surg.120(5), 856–862. (2000).
  • Webb WR, Harrison LH Jr, Helmcke FR et al. Carbon dioxide field flooding minimizes residual intracardiac air after open heart operations. Ann. Thorac. Surg.64(5), 1489–1491. (1997).
  • Martens S, Dietrich M, Wals S, Steffen S, Wimmer-Greinecker G, Moritz A. Conventional carbon dioxide application does not reduce cerebral or myocardial damage in open heart surgery. Ann. Thorac. Surg.72(6), 1940–1944 (2001).
  • Preisman S, Marks R, Nahtomi-Shick O, Sidi A. Preservation of static and dynamic cerebral autoregulation after mild hypothermic cardiopulmonary bypass. Br. J. Anaesth.95(2), 207–211 (2005).
  • Newman MF, Croughwell ND, White WD et al. Effect of perfusion pressure on cerebral blood flow during normothermic cardiopulmonary bypass. Circulation94(9 Suppl.), II353–II357 (1996).
  • Gold JP, Charlson ME, Williams-Russo P et al. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J. Thorac. Cardiovasc. Surg.110(5), 1302–1311; discussion 1311–1304 (1995).
  • Benjo A, Thompson RE, Fine D et al. Pulse pressure is an age-independent predictor of stroke development after cardiac surgery. Hypertension50(4), 630–635 (2007).
  • Undar A, Masai T, Yang SQ, Goddard-Finegold J, Frazier OH, Fraser CD Jr. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Ann. Thorac. Surg.68(4), 1336–1342; discussion 1342–1333 (1999).
  • Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. II. Neurologic and cognitive outcomes. J. Thorac. Cardiovasc. Surg.110(2), 349–362 (1995).
  • Mackensen GB, Ti LK, Phillips-Bute BG, Mathew JP, Newman MF, Grocott HP. Cerebral embolization during cardiac surgery: impact of aortic atheroma burden. Br. J. Anaesth.91(5), 656–661 (2003).
  • Royse AG, Royse CF, Ajani AE et al. Reduced neuropsychological dysfunction using epiaortic echocardiography and the exclusive Y graft. Ann. Thorac. Surg.69(5), 1431–1438 (2000).
  • Glas KE, Swaminathan M, Reeves ST et al. Guidelines for the performance of a comprehensive intraoperative epiaortic ultrasonographic examination: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists; endorsed by the Society of Thoracic Surgeons. J. Am. Soc. Echocardiogr.20(11), 1227–1235 (2007).
  • Hammon JW, Stump DA, Butterworth JF et al. Single crossclamp improves 6-month cognitive outcome in high-risk coronary bypass patients: the effect of reduced aortic manipulation. J. Thorac. Cardiovasc. Surg.131(1), 114–121 (2006).
  • Swaminathan M, Grocott HP, Mackensen GB, Podgoreanu MV, Glower DD, Mathew JP. The ‘sandblasting’ effect of aortic cannula on arch atheroma during cardiopulmonary bypass. Anesth. Analg.104(6), 1350–1351 (2007).
  • Scharfschwerdt M, Richter A, Boehmer K, Repenning D, Sievers HH. Improved hydrodynamics of a new aortic cannula with a novel tip design. Perfusion19(3), 193–197 (2004).
  • van ZaaneB, Nierich AP, Buhre WF, Brandon Bravo Bruinsma GJ, Moons KG. Resolving the blind spot of transoesophageal echocardiography: a new diagnostic device for visualizing the ascending aorta in cardiac surgery. Br. J. Anaesth.98(4), 434–441 (2007).
  • Banbury MK, Kouchoukos NT, Allen KB et al. Emboli capture using the Embol-X intraaortic filter in cardiac surgery: a multicentered randomized trial of 1,289 patients. Ann. Thorac. Surg.76(2), 508–515; discussion 515 (2003).
  • Puskas F, Grocott HP, White WD, Mathew JP, Newman MF, Bar-Yosef S. Intraoperative hyperglycemia and cognitive decline after CABG. Ann. Thorac. Surg.84(5), 1467–1473 (2007).
  • Hindman B. Con: Glucose priming solutions should not be used for cardiopulmonary bypass. J. Cardothorac. Vasc. Anes.9(5), 605–607 (1995).
  • McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit. Care Clin.17(1), 107–124 (2001).
  • Reves JG, Karp RB, Buttner EE et al. Neuronal and adrenomedullary catecholamine release in response to cardiopulmonary bypass in man. Circulation66(1), 49–55 (1982).
  • Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann. Thorac. Surg.67(2), 352–360; discussion 360–352 (1999).
  • McMahon MM, Bistrian BR. Host defenses and susceptibility to infection in patients with diabetes mellitus. Infect. Dis. Clin. North Am.9(1), 1–9 (1995).
  • van den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in the critically ill patients. N. Engl. J. Med.345(19), 1359–1367 (2001).
  • Rao N, Schilling D, Rice J, Ridenour M, Mook W, Santa E. Prevention of postoperative mediastinitis: a clinical process improvement model. J. Healthc. Qual.26(1), 22–27 (2004).
  • Guvener M, Pasaoglu I, Demircin M, Oc M. Perioperative hyperglycemia is a strong correlate of postoperative infection in Type II diabetic patients after coronary artery bypass grafting. Endocr. J.49(5), 531–537 (2002).
  • Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann. Intern. Med.128(3), 194–203 (1998).
  • Albahrani MJ, Swaminathan M, Phillips-Bute B et al. Postcardiac surgery complications: association of acute renal dysfunction and atrial fibrillation. Anesth. Analg.96(3), 637–643 (2003).
  • Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. J. Trauma58(1), 47–50 (2005).
  • Zygun DA, Steiner LA, Johnston AJ et al. Hyperglycemia and brain tissue pH after traumatic brain injury. Neurosurgery55(4), 877–881; discussion 882 (2004).
  • Leigh R, Zaidat OO, Suri MF et al. Predictors of hyperacute clinical worsening in ischemic stroke patients receiving thrombolytic therapy. Stroke35(8), 1903–1907 (2004).
  • Siesjo BK, Katsura KI, Kristian T, Li PA, Siesjo P. Molecular mechanisms of acidosis-mediated damage. Acta. Neurochir. Suppl.66, 8–14 (1996).
  • Vannucci RC, Brucklacher RM, Vannucci SJ. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat. J. Cereb. Blood Flow Metab.16(5), 1026–1033 (1996).
  • Nedergaard M, Goldman SA, Desai S, Pulsinelli WA. Acid-induced death in neurons and glia. J. Neurosci.11(8), 2489–2497 (1991).
  • Siesjo BK. Mechanisms of ischemic brain damage. Crit. Care Med.16(10), 954–963 (1988).
  • Rehncrona S, Rosen I, Siesjo BK. Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J. Cereb. Blood Flow Metab.1(3), 297–311 (1981).
  • Li PA, Shuaib A, Miyashita H, He QP, Siesjo BK, Warner DS. Hyperglycemia enhances extracellular glutamate accumulation in rats subjected to forebrain ischemia. Stroke31(1), 183–192 (2000).
  • Rejdak K, Rejdak R, Sieklucka-Dziuba M, Stelmasiak Z, Grieb P. The effects of citicoline and/or MK-801 on survival, neurological and behavioral outcome of mice exposed to transient hyperglycemia and oligemic hypoxia. Eur. Neuropsychopharmacol.11(5), 333–341 (2001).
  • Kinoshita K, Kraydieh S, Alonso O, Hayashi N, Dietrich WD. Effect of posttraumatic hyperglycemia on contusion volume and neutrophil accumulation after moderate fluid-percussion brain injury in rats. J. Neurotrauma19(6), 681–692 (2002).
  • Bourbon A, Vionnet M, Leprince P et al. The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response. Eur. J. Cardiothorac. Surg.26(5), 932–938 (2004).
  • Hoedemaekers CW, Pickkers P, Netea MG, van Deuren M, Van der Hoeven JG. Intensive insulin therapy does not alter the inflammatory response in patients undergoing coronary artery bypass grafting: a randomized controlled trial [ISRCTN95608630]. Crit. Care9(6), R790–R797 (2005).
  • Butterworth J, Wagenknecht LE, Legault C et al. Attempted control of hyperglycemia during cardiopulmonary bypass fails to improve neurologic or neurobehavioral outcomes in patients without diabetes mellitus undergoing coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg.130(5), 1319 (2005).
  • Chaney MA, Nikolov MP, Blakeman BP, Bakhos M. Attempting to maintain normoglycemia during cardiopulmonary bypass with insulin may initiate postoperative hypoglycemia. Anesth. Analg.89(5), 1091–1095 (1999).
  • Fang WC, Helm RE, Krieger KH et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation96(9 Suppl.), IIH194–II-199 (1997).
  • DeFoe GR, Ross CS, Olmstead EM et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Northern New England Cardiovascular Disease Study Group. Ann. Thorac. Surg.71(3), 769–776 (2001).
  • Karkouti K, Djaiani G, Borger MA et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann. Thorac. Surg.80(4), 1381–1387 (2005).
  • Mathew JP, Mackensen GB, Phillips-Bute B et al. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology107(4), 577–584 (2007).
  • Spiess BD. Risks of transfusion: outcome focus. Transfusion44(12 Suppl.), 4S–14S (2004).
  • Spiess BD, Royston D, Levy JH et al. Platelet transfusions during coronary artery bypass graft surgery are associated with serious adverse outcomes. Transfusion44(8), 1143–1148 (2004).
  • van Dijk D, Spoor M, Hijman R et al. Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA297(7), 701–708 (2007).
  • McBride WT, Armstrong MA, McMurray TJ. An investigation of the effects of heparin, low molecular weight heparin, protamine, and fentanyl on the balance of pro- and anti-inflammatory cytokines in in-vitro monocyte cultures. Anaesthesia51(7), 634–640 (1996).
  • Diephuis JC, Moons KG, Nierich AN, Bruens M, van Dijk D, Kalkman CJ. Jugular bulb desaturation during coronary artery surgery: a comparison of off-pump and on-pump procedures. Br. J. Anaesth.94(6), 715–720 (2005).
  • Croughwell N, Newman M, Blumenthal J et al. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Ann. Thorac.58, 1702–1708 (1994).
  • Takagi H, Tanabashi T, Kawai N, Kato T, Umemoto T. Off-pump coronary artery bypass sacrifices graft patency: meta-analysis of randomized trials. J. Thorac. Cardiovasc. Surg.133(1), e2–e3 (2007).
  • Al-Ruzzeh S, George S, Bustami M et al. Effect of off-pump coronary artery bypass surgery on clinical, angiographic, neurocognitive, and quality of life outcomes: randomised controlled trial. BMJ332(7554), 1365 (2006).
  • Wijeysundera DN, Beattie WS, Djaiani G et al. Off-pump coronary artery surgery for reducing mortality and morbidity: meta-analysis of randomized and observational studies. J. Am. Coll. Cardiol.46(5), 872–882 (2005).
  • Grocott HP. Genetic influences on cerebral outcome after cardiac surgery. Semin. Cardiothorac. Vasc. Anesth.10(4), 291–296 (2006).
  • Roach GW, Newman MF, Murkin JM et al. Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Anesthesiology90(5), 1255–1264 (1999).
  • Brott T Bogousslavsky J. Treatment of acute ischemic stroke. N. Engl. J. Med.343(10), 710–722 (2000).
  • Hartman GS, Yao FS, Bruefach M 3rd et al. Severity of aortic atheromatous disease diagnosed by transesophageal echocardiography predicts stroke and other outcomes associated with coronary artery surgery: a prospective study. Anesth. Analg.83, 701–708 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.