23
Views
11
CrossRef citations to date
0
Altmetric
Review

Biological approaches to ischemic tissue repair: gene- and cell-based strategies

, , &
Pages 653-668 | Published online: 10 Jan 2014

References

  • Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet349(9064), 1498–1504 (1997).
  • Rosamond W, Flegal K, Friday G et al. Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation115(5), E69–E171 (2007).
  • Hirsch AT, Criqui MH, Treat-Jacobson D et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA286(11), 1317–1324 (2001).
  • Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat. Med.9(6), 694–701 (2003).
  • Isner JM. Myocardial gene therapy. Nature415(10), 234–239 (2002).
  • Kastrup J. Therapeutic angiogenesis in ischemic heart disease: gene or recombinant vascular growth factor protein therapy? Curr. Gene Ther.3(3), 197–206 (2003).
  • Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol. Ther.15(7), 1233–1247 (2007).
  • Vincent KA, Jiang C, Boltje I, Kelly RA. Gene therapy progress and prospects: therapeutic angiogenesis for ischemic cardiovascular disease. Gene Ther.14(10), 781–789 (2007).
  • Stewart DJ, Hilton JD, Arnold JM et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a Phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther.13(21), 1503–1511 (2006).
  • Baumgartner I, Pieczek A, Manor O et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation97(12), 1114–1123 (1998).
  • Isner JM, Baumgartner I, Rauh G et al. Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J. Vasc. Surg.28(6), 964–973; discussion 973–975 (1998).
  • Losordo DW, Vale PR, Symes JF et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation98(25), 2800–2804 (1998).
  • Vale PR, Losordo DW, Milliken CE et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation102(9), 965–974 (2000).
  • Vale PR, Losordo DW, Milliken CE et al. Randomized, single-blind, placebo-controlled pilot study of catheter- based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation103(17), 2138–2143 (2001).
  • Kastrup J, Jorgensen E, Ruck A et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol.45(7), 982–988 (2005).
  • Henry TD, Annex BH, McKendall GR et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation107(10), 1359–1365 (2003).
  • Grines CL, Watkins MW, Helmer G et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation105(11), 1291–1297 (2002).
  • Grines CL, Watkins MW, Mahmarian JJ et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol.42(8), 1339–1347 (2003).
  • Henry TD, Grines CL, Watkins MW et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol.50(11), 1038–1046 (2007).
  • Nikol S, Baumgartner I, Van Belle E et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol. Ther.16(5), 972–978 (2008).
  • Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature287(5785), 795–801 (1980).
  • Goodrich LV, Scott MP. Hedgehog and patched in neural development and disease. Neuron21(6), 1243–1257 (1998).
  • Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell90(6), 979–990 (1997).
  • Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol.8(19), 1083–1086 (1998).
  • Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development127(12), 2763–2772 (2000).
  • Roelink H, Augsburger A, Heemskerk J et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell76(4), 761–775 (1994).
  • St-Jacques B, Dassule HR, Karavanova I et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8(19), 1058–1068 (1998).
  • St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev.13(16), 2072–2086 (1999).
  • Xu L, Badolato R, Murphy WJ et al. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J. Immunol.155(3), 1184–1190 (1995).
  • Pola R, Ling LE, Silver M et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med.7(6), 706–711 (2001).
  • Kusano KF, Pola R, Murayama T et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat. Med.11(11), 1197–1204 (2005).
  • Heistad DD, Faraci FM. Gene therapy for cerebral vascular disease. Stroke27(9), 1688–1693 (1996).
  • Ooboshi H, Welsh MJ, Rios CD, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue. Circ. Res.77, 7–13 (1995).
  • Rios CD, Ooboshi H, Piegors D, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer to normal and atherosclerotic arteries. A novel approach. Arterioscler. Throm. Vasc. Biol.15, 2241–2245 (1995).
  • Shimamura M, Sato N, Waguri S et al. Gene transfer of hepatocyte growth factor gene improves learning and memory in the chronic stage of cerebral infarction. Hypertension47(4), 742–751 (2006).
  • Yoshimura S, Morishita R, Hayashi K et al. Gene transfer of hepatocyte growth factor to subarachnoid space in cerebral hypoperfusion model. Hypertension39(5), 1028–1034 (2002).
  • Toyoda K, Faraci FM, Watanabe Y et al. Gene transfer of calcitonin gene-related peptide prevents vasoconstriction after subarachnoid hemorrhage. Circ. Res.87(9), 818–824 (2000).
  • Satoh M, Perkins E, Kimura H et al. Posttreatment with adenovirus-mediated gene transfer of calcitonin gene-related peptide to reverse cerebral vasospasm in dogs. J. Neurosurg.97(1), 136–142 (2002).
  • Stoodley M, Weihl CC, Zhang ZD et al. Effect of adenovirus-mediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage. Neurosurgery46(5), 1193–1202; discussion 1202–1203 (2000).
  • van Praag H, Schinder AF, Christie BR et al. Functional neurogenesis in the adult hippocampus. Nature415(6875), 1030–1034 (2002).
  • Yarasheski KE, Campbell JA, Smith K et al. Effect of growth hormone and resistance exercise on muscle growth in young men. Am. J. Physiol.262(3 Pt 1), E261–E267 (1992).
  • Cao L, Jiao X, Zuzga DS et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet.36(8), 827–835 (2004).
  • Shimamura M, Sato N, Oshima K et al. Novel therapeutic strategy to treat brain ischemia: overexpression of hepatocyte growth factor gene reduced ischemic injury without cerebral edema in rat model. Circulation109(3), 424–431 (2004).
  • Liu G, Li D, Pasumarthy MK et al. Nanoparticles of compacted DNA transfect postmitotic cells. J. Biol. Chem.278(35), 32578–32586 (2003).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–967 (1997).
  • Barile L, Messina E, Giacomello A, Marban E. Endogenous cardiac stem cells. Prog. Cardiovasc. Dis.50(1), 31–48 (2007).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6), 763–776 (2003).
  • Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res.95(4), 343–353 (2004).
  • Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol.23(7), 1185–1189 (2003).
  • Murohara T, Ikeda H, Duan J et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest.105(11), 1527–1536 (2000).
  • Aicher A, Rentsch M, Sasaki K et al. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ. Res.100(4), 581–589 (2007).
  • Kalka C, Masuda H, Takahashi T et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA97(7), 3422–3427 (2000).
  • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7(4), 430–436 (2001).
  • Masuda H, Kalka C, Takahashi T et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ. Res.101(6), 598–606 (2007).
  • Takahashi T, Kalka C, Masuda H et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med.5(4), 434–438 (1999).
  • Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.18(14), 3964–3972 (1999).
  • Lee SH, Wolf PL, Escudero R et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med.342(9), 626–633 (2000).
  • Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362(9385), 697–703 (2003).
  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10(8), 858–864 (2004).
  • Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation25(5), 293–300 (2001).
  • Bahlmann FH, De Groot K, Spandau JM et al. Erythropoietin regulates endothelial progenitor cells. Blood103(3), 921–926 (2004).
  • Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109(5), 625–637 (2002).
  • Aicher A, Heeschen C, Mildner-Rihm C et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9(11), 1370–1376 (2003).
  • Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85(3), 221–228 (1999).
  • Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med.195(9), 1145–1154 (2002).
  • Yamaguchi J, Kusano KF, Masuo O et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation107(9), 1322–1328 (2003).
  • Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med.9(6), 702–712 (2003).
  • Shi Q, Rafii S, Wu MH et al. Evidence for circulating bone marrow-derived endothelial cells. Blood92(2), 362–367 (1998).
  • Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation109(21 Suppl. 1), II27–II33 (2004).
  • Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation111(3), 363–368 (2005).
  • Ii M, Nishimura H, Iwakura A et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation111(9), 1114–1120 (2005).
  • Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med.348(7), 593–600 (2003).
  • Valgimigli M, Rigolin GM, Fucili A et al. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation110(10), 1209–1212 (2004).
  • Vasa M, Fichtlscherer S, Aicher A et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res.89(1), E1–E7 (2001).
  • Schmidt-Lucke C, Rossig L, Fichtlscherer S et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation111(22), 2981–2987 (2005).
  • Laufs U, Werner N, Link A et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation109(2), 220–226 (2004).
  • Vasa M, Fichtlscherer S, Adler K et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation103(24), 2885–2890 (2001).
  • Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106(15), 1913–1918 (2002).
  • Kawamoto A, Iwasaki H, Kusano K et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation114(20), 2163–2169 (2006).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol.44(8), 1690–1699 (2004).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364(9429), 141–148 (2004).
  • Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer To Enhance ST-elevation Infarct Regeneration) trial. Circulation113(10), 1287–1294 (2006).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367(9505), 113–121 (2006).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J.28(6), 766–772 (2007).
  • Abdel-Latif A, Bolli R, Tleyjeh IM et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med.167(10), 989–997 (2007).
  • Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355(12), 1222–1232 (2006).
  • Perin EC, Dohmann HF, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107(18), 2294–2302 (2003).
  • Losordo DW, Schatz RA, White CJ et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a Phase I/IIa double-blind, randomized controlled trial. Circulation115(25), 3165–3172 (2007).
  • Tateishi-Yuyama E, Matsubara H, Murohara T et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet360(9331), 427–435 (2002).
  • Lau KK, Chan YH, Yiu KH et al. Burden of carotid atherosclerosis in patients with stroke: relationships with circulating endothelial progenitor cells and hypertension. J. Hum. Hypertens.21(6), 445–451 (2007).
  • Ghani U, Shuaib A, Salam A et al. Endothelial progenitor cells during cerebrovascular disease. Stroke36(1), 151–153 (2005).
  • Yip HK, Chang LT, Chang WN et al. Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke39(1), 69–74 (2008).
  • Sobrino T, Hurtado O, Moro MA et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke38(10), 2759–2764 (2007).
  • Taguchi A, Matsuyama T, Moriwaki H et al. Circulating CD34-positive cells provide an index of cerebrovascular function. Circulation109(24), 2972–2975 (2004).
  • Hess DC, Abe T, Hill WD et al. Hematopoietic origin of microglial and perivascular cells in brain. Exp. Neurol.186(2), 134–144 (2004).
  • Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature441(7097), 1094–1096 (2006).
  • Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med.10(Suppl.), S42-S50 (2004).
  • Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ. Res.90(3), 284–288 (2002).
  • Hess DC, Hill WD, Martin-Studdard A et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke33(5), 1362–1368 (2002).
  • Shyu WC, Lin SZ, Chiang MF, Su CY, Li H. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing b1 integrin-mediated angiogenesis in chronic stroke rats. J. Neurosci.26(13), 3444–3453 (2006).
  • Shyu WC, Chen CP, Lin SZ, Lee YJ, Li H. Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke38(2), 367–374 (2007).
  • Gertz K, Priller J, Kronenberg G et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ. Res.99(10), 1132–1140 (2006).
  • Minger SL, Ekonomou A, Carta EM et al. Endogenous neurogenesis in the human brain following cerebral infarction. Regen. Med.2(1), 69–74 (2007).
  • Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol.57(6), 874–882 (2005).
  • Kondziolka D, Steinberg GK, Wechsler L et al. Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial. J. Neurosurg.103(1), 38–45 (2005).
  • Castro RF, Jackson KA, Goodell MA et al. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science297(5585), 1299 (2002).
  • Borlongan CV, Skinner SJ, Geaney M et al. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke35(9), 2206–2210 (2004).
  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med.8(9), 963–970 (2002).
  • Jin K, Minami M, Lan JQ et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl Acad. Sci. USA98(8), 4710–4715 (2001).
  • Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke38(2 Suppl.), 817–826 (2007).
  • Taguchi A, Soma T, Tanaka H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest.114(3), 330–338 (2004).
  • Krupinski J, Kaluza J, Kumar P, Wang M, Kumar S. Prognostic value of blood vessel density in ischaemic stroke. Lancet342(8873), 742 (1993).
  • Raper SE, Chirmule N, Lee FS et al. Fatal systemic inflammatory response syndrome in an ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab.80(1–2), 148–158 (2003).
  • Kurozumi K, Nakamura K, Tamiya T et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther.11(1), 96–104 (2005).
  • Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol.287(3), C572–C579 (2004).
  • Ripa RS, Wang Y, Jorgensen E et al. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur. Heart J.27(15), 1785–1792 (2006).
  • Miyagawa S, Sawa Y, Taketani S et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation105(21), 2556–2561 (2002).
  • Chachques JC, Duarte F, Cattadori B et al. Angiogenic growth factors and/or cellular therapy for myocardial regeneration: a comparative study. J. Thorac. Cardiovasc. Surg.128(2), 245–253 (2004).
  • Stevens KR, Rolle MW, Minami E et al. Chemical dimerization of fibroblast growth factor receptor-1 induces myoblast proliferation, increases intracardiac graft size, and reduces ventricular dilation in infarcted hearts. Hum. Gene Ther.18(5), 401–412 (2007).
  • Kutschka I, Kofidis T, Chen IY et al. Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation114(1 Suppl.), I174–I180 (2006).
  • Lee HJ, Kim KS, Park IH, Kim SU. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE2, E156 (2007).
  • Wei L, Cui L, Snider BJ et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol. Dis.19(1–2), 183–193 (2005).
  • Abbott JD, Huang Y, Liu D et al. Stromal cell-derived factor-1a plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation110(21), 3300–3305 (2004).
  • Lunde K, Solheim S, Aakhus S et al. Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand. Cardiovasc. J.39(3), 150–158 (2005).
  • Hedman M, Hartikainen J, Syvanne M et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation107(21), 2677–2683 (2003).
  • Kusumanto YH, van Weel V, Mulder NH et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum. Gene Ther.17(6), 683–691 (2006).
  • Rajagopalan S, Mohler ER 3rd, Lederman RJ et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a Phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation108(16), 1933–1938 (2003).
  • Makinen K, Manninen H, Hedman M et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded Phase II study. Mol. Ther.6(1), 127–133 (2002).
  • Powell RJ, Dormandy J, Simons M, Morishita R, Annex BH. Therapeutic angiogenesis for critical limb ischemia: design of the hepatocyte growth factor therapeutic angiogenesis clinical trial. Vasc. Med.9(3), 193–198 (2004).
  • Conte MS, Bandyk DF, Clowes AW et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg.43(4), 742–751; discussion 751 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.